forked from PaddlePaddle/Paddle
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Paddle-TRT] add assign op (PaddlePaddle#55426)
* [Paddle-TRT] add assign op
- Loading branch information
1 parent
ee7b7f9
commit c002a06
Showing
5 changed files
with
206 additions
and
10 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,39 @@ | ||
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h" | ||
|
||
namespace paddle { | ||
namespace inference { | ||
namespace tensorrt { | ||
|
||
class AssignOpConverter : public OpConverter { | ||
public: | ||
void operator()(const framework::proto::OpDesc& op, | ||
const framework::Scope& scope, | ||
bool test_mode) override { | ||
VLOG(3) << "convert a assign op to tensorrt"; | ||
framework::OpDesc op_desc(op, nullptr); | ||
auto* input = engine_->GetITensor(op_desc.Input("X")[0]); | ||
auto* layer = TRT_ENGINE_ADD_LAYER(engine_, Identity, *input); | ||
auto output_name = op_desc.Output("Out")[0]; | ||
RreplenishLayerAndOutput(layer, "assign", {output_name}, test_mode); | ||
} | ||
}; | ||
|
||
} // namespace tensorrt | ||
} // namespace inference | ||
} // namespace paddle | ||
|
||
REGISTER_TRT_OP_CONVERTER(assign, AssignOpConverter); |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,160 @@ | ||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import unittest | ||
from functools import partial | ||
from typing import List | ||
|
||
import numpy as np | ||
from program_config import ProgramConfig, TensorConfig | ||
from trt_layer_auto_scan_test import TrtLayerAutoScanTest | ||
|
||
import paddle.inference as paddle_infer | ||
|
||
|
||
class TrtConvertAssignTest(TrtLayerAutoScanTest): | ||
def is_program_valid(self, program_config: ProgramConfig) -> bool: | ||
compile_version = paddle_infer.get_trt_compile_version() | ||
runtime_version = paddle_infer.get_trt_runtime_version() | ||
if ( | ||
compile_version[0] * 1000 | ||
+ compile_version[1] * 100 | ||
+ compile_version[2] * 10 | ||
< 8400 | ||
): | ||
return False | ||
if ( | ||
runtime_version[0] * 1000 | ||
+ runtime_version[1] * 100 | ||
+ runtime_version[2] * 10 | ||
< 8400 | ||
): | ||
return False | ||
return True | ||
|
||
def sample_program_configs(self): | ||
def generate_input(type): | ||
if self.dims == 0: | ||
return np.ones([]).astype(type) | ||
elif self.dims == 1: | ||
return np.ones([1]).astype(type) | ||
else: | ||
return np.ones([1, 3, 64, 64]).astype(type) | ||
|
||
for dims in [0, 1, 4]: | ||
self.dims = dims | ||
for dtype in [ | ||
np.bool_, | ||
np.int32, | ||
np.float32, | ||
np.int64, | ||
]: | ||
self.has_bool_dtype = dtype == np.bool_ | ||
ops_config = [ | ||
{ | ||
"op_type": "assign", | ||
"op_inputs": {"X": ["input_data"]}, | ||
"op_outputs": {"Out": ["assign_output_data0"]}, | ||
"op_attrs": {}, | ||
}, | ||
{ | ||
"op_type": "assign", | ||
"op_inputs": {"X": ["assign_output_data0"]}, | ||
"op_outputs": {"Out": ["assign_output_data1"]}, | ||
"op_attrs": {}, | ||
}, | ||
] | ||
|
||
ops = self.generate_op_config(ops_config) | ||
|
||
program_config = ProgramConfig( | ||
ops=ops, | ||
weights={}, | ||
inputs={ | ||
"input_data": TensorConfig( | ||
data_gen=partial(generate_input, dtype) | ||
) | ||
}, | ||
outputs=["assign_output_data1"], | ||
) | ||
|
||
yield program_config | ||
|
||
def sample_predictor_configs( | ||
self, program_config | ||
) -> (paddle_infer.Config, List[int], float): | ||
def generate_dynamic_shape(attrs): | ||
if self.dims == 0: | ||
self.dynamic_shape.min_input_shape = {"input_data": []} | ||
self.dynamic_shape.max_input_shape = {"input_data": []} | ||
self.dynamic_shape.opt_input_shape = {"input_data": []} | ||
elif self.dims == 1: | ||
self.dynamic_shape.min_input_shape = {"input_data": [1]} | ||
self.dynamic_shape.max_input_shape = {"input_data": [1]} | ||
self.dynamic_shape.opt_input_shape = {"input_data": [1]} | ||
else: | ||
self.dynamic_shape.min_input_shape = { | ||
"input_data": [1, 3, 64, 64] | ||
} | ||
self.dynamic_shape.max_input_shape = { | ||
"input_data": [1, 3, 64, 64] | ||
} | ||
self.dynamic_shape.opt_input_shape = { | ||
"input_data": [1, 3, 64, 64] | ||
} | ||
|
||
def clear_dynamic_shape(): | ||
self.dynamic_shape.min_input_shape = {} | ||
self.dynamic_shape.max_input_shape = {} | ||
self.dynamic_shape.opt_input_shape = {} | ||
|
||
def generate_trt_nodes_num(attrs, dynamic_shape): | ||
if not dynamic_shape and ( | ||
self.has_bool_dtype or self.dims == 1 or self.dims == 0 | ||
): | ||
return 0, 4 | ||
return 1, 2 | ||
|
||
attrs = [ | ||
program_config.ops[i].attrs for i in range(len(program_config.ops)) | ||
] | ||
|
||
# for static_shape | ||
clear_dynamic_shape() | ||
self.trt_param.precision = paddle_infer.PrecisionType.Float32 | ||
yield self.create_inference_config(), generate_trt_nodes_num( | ||
attrs, False | ||
), 1e-5 | ||
self.trt_param.precision = paddle_infer.PrecisionType.Half | ||
yield self.create_inference_config(), generate_trt_nodes_num( | ||
attrs, False | ||
), 1e-2 | ||
|
||
# for dynamic_shape | ||
generate_dynamic_shape(attrs) | ||
self.trt_param.precision = paddle_infer.PrecisionType.Float32 | ||
yield self.create_inference_config(), generate_trt_nodes_num( | ||
attrs, True | ||
), 1e-5 | ||
self.trt_param.precision = paddle_infer.PrecisionType.Half | ||
yield self.create_inference_config(), generate_trt_nodes_num( | ||
attrs, True | ||
), 1e-2 | ||
|
||
def test(self): | ||
self.run_test() | ||
|
||
|
||
if __name__ == "__main__": | ||
unittest.main() |