Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add TensorViewBuilder::shape(std::vector<Val*> shape) #1884

Merged
merged 2 commits into from
Aug 5, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion torch/csrc/jit/codegen/cuda/executor_utils.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -794,7 +794,7 @@ kir::ExpressionEvaluator bindKernelInputs(
extent->toString(),
" to ",
value,
"but it's already set to ",
" but it's already set to ",
*prev_value);
should_bind = false;
}
Expand Down
5 changes: 3 additions & 2 deletions torch/csrc/jit/codegen/cuda/ir_interface_nodes.h
Original file line number Diff line number Diff line change
Expand Up @@ -572,7 +572,8 @@ class TORCH_CUDA_CU_API TensorViewBuilder {
TensorViewBuilder& contiguity(std::vector<bool> contiguity);

//! Set the shape (default 0 dimensional, ie. scalar)
TensorViewBuilder& shape(std::vector<int64_t> shape);
TensorViewBuilder& shape(std::vector<Val*> shape);
TensorViewBuilder& shape(const std::vector<int64_t>& shape);

//! Creates a new TensorView with the specified options
TensorView* build() const;
Expand All @@ -581,7 +582,7 @@ class TORCH_CUDA_CU_API TensorViewBuilder {
size_t ndims_ = 0;
DataType dtype_ = DataType::Float;
std::vector<bool> contiguity_;
std::vector<int64_t> shape_;
std::vector<Val*> shape_;
};

} // namespace cuda
Expand Down
8 changes: 4 additions & 4 deletions torch/csrc/jit/codegen/cuda/ops/normalization.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -529,8 +529,8 @@ ForwardNormResult batch_norm(
auto invstd_bcast = broadcast(unbiased_invstd, broadcast_mask);

// During inference, mean/invstd output are empty tensors
mean = TensorViewBuilder().shape({0}).build();
invstd = TensorViewBuilder().shape({0}).build();
mean = TensorViewBuilder().shape(std::vector<int64_t>{0}).build();
invstd = TensorViewBuilder().shape(std::vector<int64_t>{0}).build();
y = mul(x_sub_mean, invstd_bcast);
}

Expand Down Expand Up @@ -782,8 +782,8 @@ ForwardNormResult instance_norm(
broadcast(unbiased_invstd, channels_only_broadcast_mask);

// During inference, mean/invstd output are empty tensors
mean = TensorViewBuilder().shape({0}).build();
invstd = TensorViewBuilder().shape({0}).build();
mean = TensorViewBuilder().shape(std::vector<int64_t>{0}).build();
invstd = TensorViewBuilder().shape(std::vector<int64_t>{0}).build();
y = mul(x_sub_mean, invstd_bcast);
}

Expand Down
39 changes: 28 additions & 11 deletions torch/csrc/jit/codegen/cuda/tensor_view.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -1193,7 +1193,29 @@ TensorViewBuilder& TensorViewBuilder::contiguity(std::vector<bool> contiguity) {
return *this;
}

TensorViewBuilder& TensorViewBuilder::shape(std::vector<int64_t> shape) {
TensorViewBuilder& TensorViewBuilder::shape(const std::vector<int64_t>& shape) {
TORCH_CHECK(shape_.empty(), "Attempting to reset shape");
if (!shape.empty()) {
TORCH_CHECK(ndims_ == 0 || ndims_ == shape.size());
ndims_ = shape.size();
}
shape_.clear();
shape_.reserve(shape.size());
for (int64_t i : shape) {
if (i == -1) {
shape_.emplace_back(IrBuilder::create<Int>());
} else {
TORCH_CHECK(
i >= 0,
"Invalid extent value. ",
"For a tensor representing a single scalar use ndims = 0 with no sizes set.");
shape_.emplace_back(IrBuilder::create<Int>(i));
}
}
return *this;
}

TensorViewBuilder& TensorViewBuilder::shape(std::vector<Val*> shape) {
TORCH_CHECK(shape_.empty(), "Attempting to reset shape");
if (!shape.empty()) {
TORCH_CHECK(ndims_ == 0 || ndims_ == shape.size());
Expand All @@ -1207,28 +1229,23 @@ TensorView* TensorViewBuilder::build() const {
// Build the domain
std::vector<IterDomain*> domain(ndims_, nullptr);
for (const auto i : c10::irange(ndims_)) {
if (shape_.empty() || shape_[i] == -1) {
if (shape_.empty()) {
domain[i] =
IterDomainBuilder(
FusionGuard::getCurFusion()->zeroVal(), IrBuilder::create<Int>())
.build();
} else {
TORCH_CHECK(
shape_[i] >= 0,
"Invalid extent value. ",
"For a tensor representing a single scalar use ndims = 0 with no sizes set.");
if (shape_[i] == 1) {
if (shape_[i]->isOneInt()) {
// If size is known to be 1, assume it needs to be broadcasted.
domain[i] = IterDomainBuilder(
FusionGuard::getCurFusion()->zeroVal(),
FusionGuard::getCurFusion()->oneVal())
.iter_type(IterType::Broadcast)
.build();
} else {
domain[i] = IterDomainBuilder(
FusionGuard::getCurFusion()->zeroVal(),
IrBuilder::create<Int>(shape_[i]))
.build();
domain[i] =
IterDomainBuilder(FusionGuard::getCurFusion()->zeroVal(), shape_[i])
.build();
}
}
}
Expand Down
74 changes: 74 additions & 0 deletions torch/csrc/jit/codegen/cuda/test/test_gpu.cpp
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
#if defined(USE_CUDA)
#include <gmock/gmock-matchers.h>
#include <gtest/gtest.h>

#include <torch/csrc/jit/codegen/cuda/arith.h>
Expand Down Expand Up @@ -25409,6 +25410,79 @@ TEST_F(NVFuserTest, FusionPrint_CUDA) {
}
}

TEST_F(NVFuserTest, FusionCheckedSymbolicShape_CUDA) {
const auto options =
at::TensorOptions().dtype(at::kFloat).device(at::kCUDA, 0);

at::Tensor a = at::randn({123, 456}, options);
at::Tensor b = at::randn({123, 456}, options);
at::Tensor c = at::randn({321, 654}, options);

using return_t =
std::pair<std::unique_ptr<FusionExecutorCache>, std::vector<at::Tensor>>;
auto matched_add = [](at::Tensor a, at::Tensor b) -> return_t {
auto fusion = std::make_unique<Fusion>();
FusionGuard fg(fusion.get());

Val* s1 = IrBuilder::create<Int>();
Val* s2 = IrBuilder::create<Int>();
auto builder = TensorViewBuilder().shape(std::vector<Val*>{s1, s2});
TensorView* tv0 = builder.build();
TensorView* tv1 = builder.build();

fusion->addInput(tv0);
fusion->addInput(tv1);

auto tv2 = add(tv0, tv1);

fusion->addOutput(tv2);

auto executor_cache =
std::make_unique<FusionExecutorCache>(std::move(fusion));
auto cg_outputs = executor_cache->runFusionWithInputs({a, b});
return {std::move(executor_cache), std::move(cg_outputs)};
};

{
auto ret1 = matched_add(a, b);
testValidate(
ret1.first->fusion(), ret1.second, {a, b}, {a + b}, __LINE__, __FILE__);
}

{
EXPECT_THAT(
[&]() { matched_add(a, c); },
::testing::ThrowsMessage<c10::Error>(
::testing::HasSubstr("Attempting to bind")));
}
}

TEST_F(NVFuserTest, FusionSizeDependentData_CUDA) {
auto fusion = std::make_unique<Fusion>();
FusionGuard fg(fusion.get());

Val* s1 = IrBuilder::create<Int>();
auto builder = TensorViewBuilder().shape(std::vector<Val*>{s1});
TensorView* tv0 = builder.build();

fusion->addInput(tv0);

auto tv1 = add(tv0, s1);

fusion->addOutput(tv1);

const auto options =
at::TensorOptions().dtype(at::kFloat).device(at::kCUDA, 0);

at::Tensor a = at::zeros({123}, options);

FusionExecutorCache executor_cache(std::move(fusion));
auto cg_outputs = executor_cache.runFusionWithInputs({a});

testValidate(
executor_cache.fusion(), cg_outputs, {a}, {a + 123}, __LINE__, __FILE__);
}

} // namespace jit
} // namespace torch
#endif // #if defined(USE_CUDA)