Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Remove unused variables #1955

Merged
merged 1 commit into from
Sep 3, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 0 additions & 4 deletions benchmarks/cpp/nvfuser/batch_norm_channels_first.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -73,10 +73,6 @@ static void NvFuserScheduler_BatchNorm(
DataType dtype) {
TORCH_INTERNAL_ASSERT(dtype == DataType::Float || dtype == DataType::Half);

const bool kTraining = true;
const float kMomentum = 0.1;
const float kEps = 1e-5;

std::vector<int64_t> input_shape{
benchmark_state.range(0),
benchmark_state.range(1),
Expand Down
4 changes: 0 additions & 4 deletions benchmarks/cpp/nvfuser/batch_norm_channels_first_backward.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,6 @@ static void setupBatchNorm_BWD(Fusion* fusion, DataType dtype) {
FusionGuard fg(fusion);

const bool kTraining = true;
const float kMomentum = 0.1;
const float kEps = 1e-5;

// setup fusion
Expand Down Expand Up @@ -85,9 +84,6 @@ static void NvFuserScheduler_BatchNorm_BWD(
DataType dtype) {
TORCH_INTERNAL_ASSERT(dtype == DataType::Float || dtype == DataType::Half);

const bool kTraining = true;
const float kEps = 1e-5;

std::vector<int64_t> input_shape{
benchmark_state.range(0),
benchmark_state.range(1),
Expand Down
4 changes: 0 additions & 4 deletions benchmarks/cpp/nvfuser/batch_norm_channels_last.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -74,10 +74,6 @@ static void NvFuserScheduler_BatchNorm_nhwc(
DataType dtype) {
TORCH_INTERNAL_ASSERT(dtype == DataType::Float || dtype == DataType::Half);

const bool kTraining = true;
const float kMomentum = 0.1;
const float kEps = 1e-5;

std::vector<int64_t> input_shape{
benchmark_state.range(0),
benchmark_state.range(2),
Expand Down
4 changes: 0 additions & 4 deletions benchmarks/cpp/nvfuser/batch_norm_channels_last_backward.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,6 @@ static void setupBatchNorm_nhwc_BWD(Fusion* fusion, DataType dtype) {
FusionGuard fg(fusion);

const bool kTraining = true;
const float kMomentum = 0.1;
const float kEps = 1e-5;

// setup fusion
Expand Down Expand Up @@ -86,9 +85,6 @@ static void NvFuserScheduler_BatchNorm_nhwc_BWD(
DataType dtype) {
TORCH_INTERNAL_ASSERT(dtype == DataType::Float || dtype == DataType::Half);

const bool kTraining = true;
const float kEps = 1e-5;

std::vector<int64_t> input_shape{
benchmark_state.range(0),
benchmark_state.range(2),
Expand Down
3 changes: 0 additions & 3 deletions benchmarks/cpp/nvfuser/gelu_backward.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -113,9 +113,6 @@ BENCHMARK(GeluBackward_AutoSchedule)->Unit(benchmark::kMicrosecond);
//------------------------------------------------------------------------------

static void GeluBackward_Lower(benchmark::State& benchmark_state) {
constexpr int kHiddenFeatures = 512;
constexpr int kBatchSize = 64;

Fusion fusion;

// setup fusion
Expand Down
2 changes: 0 additions & 2 deletions benchmarks/cpp/nvfuser/layer_norm.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,6 @@ static void setupLayerNorm(Fusion* fusion, DataType dtype) {

FusionGuard fg(fusion);

const int kReductionAxis = 1;
const float kEps = 1e-5;

Double* eps_ptr = IrBuilder::create<Double>(kEps);
Expand Down Expand Up @@ -61,7 +60,6 @@ static void NvFuserScheduler_LayerNorm(

std::vector<int64_t> input_shape{
benchmark_state.range(0), benchmark_state.range(1)};
const float kEps = 1e-5;

// inputs
at::manual_seed(0);
Expand Down
3 changes: 0 additions & 3 deletions benchmarks/cpp/nvfuser/layer_norm_backward.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -22,9 +22,6 @@ static void setupLayerNorm_BWD(Fusion* fusion, DataType dtype) {

TORCH_INTERNAL_ASSERT(dtype == DataType::Float || dtype == DataType::Half);

const int kReductionAxis = 1;
Double* eps_ptr = IrBuilder::create<Double>(1e-5);

// setup fusion
auto grad_out = makeContigTensor(2, dtype);
auto input = makeContigTensor(2, dtype);
Expand Down
2 changes: 0 additions & 2 deletions benchmarks/cpp/nvfuser/rms_norm.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -24,7 +24,6 @@ static void setupRMSNorm(Fusion* fusion, DataType dtype) {

FusionGuard fg(fusion);

const int kReductionAxis = 2;
const float kEps = 1e-6;

Double* eps_ptr = IrBuilder::create<Double>(kEps);
Expand Down Expand Up @@ -61,7 +60,6 @@ static void NvFuserScheduler_RMSNorm(
dtype == DataType::BFloat16);

std::vector<int64_t> input_shape{8, benchmark_state.range(0), 1024};
const float kEps = 1e-6;

// inputs
at::manual_seed(0);
Expand Down
3 changes: 0 additions & 3 deletions benchmarks/cpp/nvfuser/rms_norm_backward.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -24,9 +24,6 @@ static void setupRMSNorm_BWD(Fusion* fusion, DataType dtype) {
dtype == DataType::Float || dtype == DataType::Half ||
dtype == DataType::BFloat16);

const int kReductionAxis = 2;
Double* eps_ptr = IrBuilder::create<Double>(1e-6);

// setup fusion
auto grad_out = makeContigTensor(3, dtype);
auto input = makeContigTensor(3, dtype);
Expand Down
3 changes: 0 additions & 3 deletions benchmarks/cpp/nvfuser/timm.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -139,7 +139,6 @@ static void setup_vit_base_patch16_224_bcast5(Fusion* fusion, void* null) {
auto t20 = sum(t37, {2});
auto t24 = broadcast(t20, bcast_pattern1);
auto d95 = castOp(DataType::Double, t2->axis(2)->extent());
auto d96 = mul(IrBuilder::create<Double>(1.0), d95);
auto d105 = reciprocal(d95);
auto t25 = mul(t24, d105);
auto t26 = add(t25, IrBuilder::create<Double>(1e-6));
Expand Down Expand Up @@ -320,8 +319,6 @@ static void NvFuserScheduler_TIMM_vit_base_patch16_224_norm_inner3(

at::manual_seed(0);
auto fp16_options = at::TensorOptions().dtype(at::kHalf).device(at::kCUDA, 0);
auto fp32_options =
at::TensorOptions().dtype(at::kFloat).device(at::kCUDA, 0);

auto t0 = at::randn(input_shape, fp16_options);

Expand Down