Skip to content

cswwp/Bengali-kaggle

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

57 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Bengali-kaggle

best result

liner5 CV 0.9905 LB 0.9810 (train with cutmix randomshiftrotate and input size is 128x128x1) Liner1 CV 0.9913 LB 0.9810 (train with cutmix randomshiftrotate and input size is 128x128x1)

CMD RUN: python train.py --model senet50 --outdir YOUR_OUT_DIR --gpu_ids 2,3 --width 128 --height 128 --feather_data_path BengaliData/feather_resize128/ --mixup 1 --image_mode gray --patience 3 --LR_SCHEDULER REDUCED --optimizer RADAM --image_mode gray --lr 1e-3 --lr_ratio 0.9 --batch_size 512

model: which model to use outdir: model and log save dir gpu_ids: which gpu will use, gpu index start from 0 width: input image width height: input image height feather_data_path: data location for train and val, generate by offline with parquet2feather in data.py mixup: use cutmix or not image_mode: input image mode rgb or gray patience: ReduceLROnPlateau patience LR_SCHEDULER : which one schedular will use optimizer: which optimizer will use lr : learning rate lr_ratio: ReduceLROnPlateau factor batch_size: batch_size

liner5 head + cutmix + rotate inputsize 128x128x1 global_max_recall CV 0.9905 LB 0.9810 liner1 head + cutmix + rotate inputsize 128x128x1 global_max_recall CV 0.9913 LB 0.9810

So the liner5's gap between CV an LB is small, so it should be better model

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •