Social Bebehavior Modeling of 2-mice data
-
PyTorch implementation of state-space models, build on the ssm package.
Currently, we have
-
ARHMM with Normal emission notebook demo
-
ARHMM with Sigmoid-Normal emission notebook demo
-
Sigmoid-Noral distribution:
-
parameters:
$\mu, \sigma$ , lower & upper bounds$l,u$ . -
generative process:
$z \sim N(0,1)$ $x = (u-l) * \sigma (\mu + \sigma z) + l $ -
In training the real data, another parameter
$\alpha$ can be added:$x = (u-l) * \sigma (\alpha(\mu + \sigma z)) + l$ to tune the initialization. -
See how the parameters affect the distribution here SigmoidNormal distribution demo
-
-
-
-
check how the models work on mice data project notebooks