This is an code implementation of "Improving Transferability for Cross-domain Trajectory Prediction via Neural Stochastic Differential Equation", AAAI'24
Please follow below steps to run our code
conda env create --file env.yaml -n trajsde
conda activate trajsde
Download meta data of trainval set of nuScenes from "https://www.nuscenes.org/nuscenes#download".
Download Training/Validataion/Testing dataset of motion forecasting from "https://www.argoverse.org/av1.html#download-link"
Locate them in 'data' dir as following:
.
├── configs
├── ...
├── data
│ ├── nuScenes
│ │ ├── maps
│ │ ├── samples
│ │ ├── ...
│ │ └── v1.0-trainval
│ └── argodataset
│ ├── map_files
│ ├── train
│ └── val
└── train.py
mkdir preprocessed
# Argoverse
python dataset/Argoverse/Argoverse_abs.py
# nuScenes
python dataset/nuScenes/nuScenes_hivt.py
Then, preprocess data files are saved in 'preprocessed/Argoverse' for Argoverse and 'preprocessed/nuScenes' for nuScenes.
mkdir checkpoints
# Vanilla HiVT
python train.py -n baseline -c configs/nusargo/hivt_nuSArgo_trmenc_mlpdec.yml
# Ours
python train.py -n nsde -c configs/nusargo/hivt_nuSArgo_sdesepenc_sdedec.yml