Skip to content

daintlab/confidence-aware-learning

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Confidence-Aware Learning for Deep Neural Networks

This repository provides the code for training with Correctness Ranking Loss presented in the paper "Confidence-Aware Learning for Deep Neural Networks" accepted to ICML2020.

Getting Started

Requirements

* ubuntu 18.0.4, cuda10
* python 3.6.8
* pytorch >= 1.2.0
* torchvision >= 0.4.0 

Datasets

  • CIFAR-10, CIFAR-100, SVHN

How to Run

Arguments

Args Type Description Default
epochs [int] epochs 300
batch_size [int] batch size 128
data [str] cifar10, cifar100, svhn cifar10
model [str] res, dense, vgg res
rank_target [str] softmax, entropy, margin softmax
rank_weight [float] rank_weight 1.0
data_path [str] data path ./data/
save_path [str] save files path -
file_name [str] pretrained file name -
gpu [str] gpu number 0

Train with Correctness Ranking Loss

# Examples 
python main.py --save_path ./res_cifar10/softmax/ --model res --data cifar10 --rank_target softmax --rank_weight 1.0 --gpu 0 
python main.py --save_path ./vgg_cifar100/entropy/ --model vgg --data cifar100 --rank_target entropy --rank_weight 1.0 --gpu 0 

Train baseline models

  • Set rank_weight = 0.
# Examples
python main.py --save_path ./res_cifar10/baseline/ --model res --data cifar10 --rank_weight 0.0 --gpu 0 
python main.py --save_path ./vgg_cifar100/baseline/ --model vgg --data cifar100 --rank_weight 0.0 --gpu 0 

Evaluate the trained model

# Calculate performance measures from the trained model `file_name.pth` located in `save_path`

|---- test.py
|     |---- save_path
|           |---- file_name.pth
|           |---- result.log

python test.py --save_path ./res_cifar10/ --file_name model --model res --data cifar10 --gpu 0 
python test.py --save_path ./vgg_svhn/ --file_name model --model vgg --data svhn --gpu 0

Results

Performance measures

  • Accuracy
  • AURC, EAURC
  • Expected Calibration Error(ECE)
  • Negative Log Likelihood(NLL)
  • Brier Score
  • AUPR Error, FPR 95% TPR

Results on CIFAR-100

Architecture Dataset Model ACC AURC AUPR FPR ECE NLL
PreActResNet110 CIFAR100 Baseline 73.32 86.54 65.37 66.42 16.39 14.93
PreActResNet110 CIFAR100 CRL-softmax 74.34 72.35 68.13 61.30 11.45 10.86
DenseNet_BC CIFAR100 Baseline 75.13 72.40 66.41 62.85 12.94 11.59
DenseNet_BC CIFAR100 CRL-softmax 76.75 62.71 65.87 60.22 8.66 9.12
VGG16 CIFAR100 Baseline 73.62 77.80 68.11 62.21 19.95 18.35
VGG16 CIFAR100 CRL-softmax 73.84 71.98 71.04 59.06 13.92 13.03
  • More results can be found in the paper.

Citation

@inproceedings{moon2020crl,
  title={Confidence-Aware Learning for Deep Neural Networks},
  author={Moon, Jooyoung and Kim, Jihyo and Shin, Younghak and Hwang, Sangheum},
  booktitle={International Conference on Machine Learning},
  year={2020}
}

Contact for issues

About

Confidence-Aware Learning for Deep Neural Networks (ICML2020)

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages