Skip to content
forked from JMoonr/LATR

[ICCV2023 Oral] LATR: 3D Lane Detection from Monocular Images with Transformer

Notifications You must be signed in to change notification settings

daishiqiang123/LATR

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 

Repository files navigation

[ICCV2023 Oral] LATR: 3D Lane Detection from Monocular Images with Transformer

Official PyTorch implementation of LATR: 3D Lane Detection from Monocular Images with Transformer

fig2

Code will be released.

Benchmark

OpenLane

Models F1 Accuracy X error
near | far
Z-error
near | far
3DLaneNet 44.1 - 0.479 | 0.572 0.367 | 0.443
GenLaneNet 32.3 - 0.593 | 0.494 0.140 | 0.195
Cond-IPM 36.3 - 0.563 | 1.080 0.421 | 0.892
PersFormer 50.5 89.5 0.319 | 0.325 0.112 | 0.141
CurveFormer 50.5 - 0.340 | 0.772 0.207 | 0.651
PersFormer-Res50 53.0 89.2 0.321 | 0.303 0.085 | 0.118
LATR-Lite 61.5 91.9 0.225 | 0.249 0.073 | 0.106
LATR 61.9 92.0 0.219 | 0.259 0.075 | 0.104

Apollo

Plaes kindly refer to our paper for the performance on other scenes.

Scene Models F1 AP X error
near | far
Z error
near | far
Balanced Scene 3DLaneNet 86.4 89.3 0.068 | 0.477 0.015 | 0.202
GenLaneNet 88.1 90.1 0.061 | 0.496 0.012 | 0.214
CLGo 91.9 94.2 0.061 | 0.361 0.029 | 0.250
PersFormer 92.9 - 0.054 | 0.356 0.010 | 0.234
GP 91.9 93.8 0.049 | 0.387 0.008 | 0.213
CurveFormer 95.8 97.3 0.078 | 0.326 0.018 | 0.219
LATR-Lite 96.5 97.8 0.035 | 0.283 0.012 | 0.209
LATR 96.8 97.9 0.022 | 0.253 0.007 | 0.202

ONCE

Method F1 Precision(%) Recall(%) CD error(m)
3DLaneNet 44.73 61.46 35.16 0.127
GenLaneNet 45.59 63.95 35.42 0.121
SALAD 64.07 75.90 55.42 0.098
PersFormer 72.07 77.82 67.11 0.086
LATR 80.59 86.12 75.73 0.052

Acknowledgment

This library is inspired by OpenLane, GenLaneNet, mmdetection3d, SparseInst, ONCE and many other related works, we thank them for sharing the code and datasets.

Citation

If you find LATR is useful, please cite:

@article{luo2023latr,
  title={LATR: 3D Lane Detection from Monocular Images with Transformer},
  author={Luo, Yueru and Zheng, Chaoda and Yan, Xu and Kun, Tang and Zheng, Chao and Cui, Shuguang and Li, Zhen},
  journal={arXiv preprint arXiv:2308.04583},
  year={2023}
}

About

[ICCV2023 Oral] LATR: 3D Lane Detection from Monocular Images with Transformer

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published