Skip to content

Commit

Permalink
add share_data op (PaddlePaddle#57933)
Browse files Browse the repository at this point in the history
  • Loading branch information
ming1753 authored Oct 11, 2023
1 parent 9802c7c commit 14555fe
Show file tree
Hide file tree
Showing 5 changed files with 201 additions and 3 deletions.
1 change: 1 addition & 0 deletions paddle/fluid/inference/api/analysis_predictor.cc
Original file line number Diff line number Diff line change
Expand Up @@ -2954,6 +2954,7 @@ USE_TRT_CONVERTER(cumsum)
USE_TRT_CONVERTER(assign)
USE_TRT_CONVERTER(unbind)
USE_TRT_CONVERTER(flip)
USE_TRT_CONVERTER(share_data)
#if IS_TRT_VERSION_GE(8522)
USE_TRT_CONVERTER(flash_multihead_matmul)
USE_TRT_CONVERTER(cross_multihead_matmul)
Expand Down
3 changes: 2 additions & 1 deletion paddle/fluid/inference/tensorrt/convert/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -111,7 +111,8 @@ list(
assign_op.cc
flip_op.cc
quantize_linear_op.cc
dequantize_linear_op.cc)
dequantize_linear_op.cc
share_data_op.cc)

if(${TENSORRT_MAJOR_VERSION} GREATER_EQUAL 7)
list(APPEND CONVERT_FILES emb_eltwise_layernorm.cc
Expand Down
39 changes: 39 additions & 0 deletions paddle/fluid/inference/tensorrt/convert/share_data_op.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,39 @@
/* Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"

namespace paddle {
namespace inference {
namespace tensorrt {

class ShareDataOpConverter : public OpConverter {
public:
void operator()(const framework::proto::OpDesc& op,
const framework::Scope& scope,
bool test_mode) override {
VLOG(3) << "convert a share_data op to tensorrt";
framework::OpDesc op_desc(op, nullptr);
auto* input = engine_->GetITensor(op_desc.Input("X")[0]);
auto* layer = TRT_ENGINE_ADD_LAYER(engine_, Identity, *input);
auto output_name = op_desc.Output("Out")[0];
RreplenishLayerAndOutput(layer, "share_data", {output_name}, test_mode);
}
};

} // namespace tensorrt
} // namespace inference
} // namespace paddle

REGISTER_TRT_OP_CONVERTER(share_data, ShareDataOpConverter);
6 changes: 4 additions & 2 deletions paddle/fluid/inference/tensorrt/op_teller.cc
Original file line number Diff line number Diff line change
Expand Up @@ -2918,7 +2918,8 @@ struct SimpleOpTypeSetTeller : public Teller {
"assign",
"flip",
"quantize_linear",
"dequantize_linear"};
"dequantize_linear",
"share_data"};

std::unordered_set<std::string> teller_set{
"matrix_multiply",
Expand Down Expand Up @@ -3086,7 +3087,8 @@ struct SimpleOpTypeSetTeller : public Teller {
"assign",
"flip",
"quantize_linear",
"dequantize_linear"};
"dequantize_linear",
"share_data"};
};

struct GenericPluginTeller : public Teller {
Expand Down
155 changes: 155 additions & 0 deletions test/ir/inference/test_trt_convert_share_data.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,155 @@
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
from functools import partial
from typing import List

import numpy as np
from program_config import ProgramConfig, TensorConfig
from trt_layer_auto_scan_test import TrtLayerAutoScanTest

import paddle.inference as paddle_infer


class TrtConvertShareDataTest(TrtLayerAutoScanTest):
def is_program_valid(self, program_config: ProgramConfig) -> bool:
compile_version = paddle_infer.get_trt_compile_version()
runtime_version = paddle_infer.get_trt_runtime_version()
if (
compile_version[0] * 1000
+ compile_version[1] * 100
+ compile_version[2] * 10
< 8400
):
return False
if (
runtime_version[0] * 1000
+ runtime_version[1] * 100
+ runtime_version[2] * 10
< 8400
):
return False
return True

def sample_program_configs(self):
def generate_input(type):
if self.dims == 1:
return np.ones([1]).astype(type)
else:
return np.ones([1, 3, 64, 64]).astype(type)

for dims in [1, 4]:
self.dims = dims
for dtype in [
np.int32,
np.float32,
np.int64,
]:
self.has_bool_dtype = dtype == np.bool_
ops_config = [
{
"op_type": "share_data",
"op_inputs": {"X": ["input_data"]},
"op_outputs": {"Out": ["output_data0"]},
"op_attrs": {},
},
{
"op_type": "share_data",
"op_inputs": {"X": ["output_data0"]},
"op_outputs": {"Out": ["output_data1"]},
"op_attrs": {},
},
]

ops = self.generate_op_config(ops_config)

program_config = ProgramConfig(
ops=ops,
weights={},
inputs={
"input_data": TensorConfig(
data_gen=partial(generate_input, dtype)
)
},
outputs=["output_data1"],
)

yield program_config

def sample_predictor_configs(
self, program_config
) -> (paddle_infer.Config, List[int], float):
def generate_dynamic_shape(attrs):
if self.dims == 1:
self.dynamic_shape.min_input_shape = {"input_data": [1]}
self.dynamic_shape.max_input_shape = {"input_data": [1]}
self.dynamic_shape.opt_input_shape = {"input_data": [1]}
else:
self.dynamic_shape.min_input_shape = {
"input_data": [1, 3, 64, 64]
}
self.dynamic_shape.max_input_shape = {
"input_data": [1, 3, 64, 64]
}
self.dynamic_shape.opt_input_shape = {
"input_data": [1, 3, 64, 64]
}

def clear_dynamic_shape():
self.dynamic_shape.min_input_shape = {}
self.dynamic_shape.max_input_shape = {}
self.dynamic_shape.opt_input_shape = {}

def generate_trt_nodes_num(attrs, dynamic_shape):
if not dynamic_shape and self.dims == 1:
return 0, 4
return 1, 2

attrs = [
program_config.ops[i].attrs for i in range(len(program_config.ops))
]

# for static_shape
clear_dynamic_shape()
self.trt_param.precision = paddle_infer.PrecisionType.Float32
program_config.set_input_type(np.float32)
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, False
), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
program_config.set_input_type(np.float16)
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, False
), 1e-2

# for dynamic_shape
generate_dynamic_shape(attrs)
self.trt_param.precision = paddle_infer.PrecisionType.Float32
program_config.set_input_type(np.float32)
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, True
), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
program_config.set_input_type(np.float16)
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, True
), 1e-2

def test(self):
self.run_test()


if __name__ == "__main__":
unittest.main()

0 comments on commit 14555fe

Please sign in to comment.