Skip to content

Commit

Permalink
Update hubconf.py for unified loading (ultralytics#3005)
Browse files Browse the repository at this point in the history
  • Loading branch information
glenn-jocher authored and danny-schwartz7 committed May 22, 2021
1 parent 9cabb52 commit c3b7fc5
Showing 1 changed file with 7 additions and 27 deletions.
34 changes: 7 additions & 27 deletions hubconf.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@
check_requirements(Path(__file__).parent / 'requirements.txt', exclude=('tensorboard', 'pycocotools', 'thop'))


def create(name, pretrained, channels, classes, autoshape, verbose):
def create(name, pretrained, channels=3, classes=80, autoshape=True, verbose=True):
"""Creates a specified YOLOv5 model
Arguments:
Expand All @@ -33,7 +33,7 @@ def create(name, pretrained, channels, classes, autoshape, verbose):
YOLOv5 pytorch model
"""
set_logging(verbose=verbose)
fname = f'{name}.pt' # checkpoint filename
fname = Path(name).with_suffix('.pt') # checkpoint filename
try:
if pretrained and channels == 3 and classes == 80:
model = attempt_load(fname, map_location=torch.device('cpu')) # download/load FP32 model
Expand All @@ -60,30 +60,9 @@ def create(name, pretrained, channels, classes, autoshape, verbose):
raise Exception(s) from e


def custom(path_or_model='path/to/model.pt', autoshape=True, verbose=True):
"""YOLOv5-custom model https://github.com/ultralytics/yolov5
Arguments (3 options):
path_or_model (str): 'path/to/model.pt'
path_or_model (dict): torch.load('path/to/model.pt')
path_or_model (nn.Module): torch.load('path/to/model.pt')['model']
Returns:
pytorch model
"""
set_logging(verbose=verbose)

model = torch.load(path_or_model) if isinstance(path_or_model, str) else path_or_model # load checkpoint
if isinstance(model, dict):
model = model['ema' if model.get('ema') else 'model'] # load model

hub_model = Model(model.yaml).to(next(model.parameters()).device) # create
hub_model.load_state_dict(model.float().state_dict()) # load state_dict
hub_model.names = model.names # class names
if autoshape:
hub_model = hub_model.autoshape() # for file/URI/PIL/cv2/np inputs and NMS
device = select_device('0' if torch.cuda.is_available() else 'cpu') # default to GPU if available
return hub_model.to(device)
def custom(path='path/to/model.pt', autoshape=True, verbose=True):
# YOLOv5 custom or local model
return create(path, autoshape, verbose)


def yolov5s(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True):
Expand Down Expand Up @@ -127,7 +106,8 @@ def yolov5x6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=Tr


if __name__ == '__main__':
model = create(name='yolov5s', pretrained=True, channels=3, classes=80, autoshape=True, verbose=True) # pretrained
model = create(name='weights/yolov5s.pt', pretrained=True, channels=3, classes=80, autoshape=True,
verbose=True) # pretrained
# model = custom(path_or_model='path/to/model.pt') # custom

# Verify inference
Expand Down

0 comments on commit c3b7fc5

Please sign in to comment.