This repository has been archived by the owner on Nov 25, 2022. It is now read-only.
forked from apache/tvm
-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Hexagon] Create test examples to show parallelization (apache#12654)
* [Hexagon] Create test examples to show parallelization working on Hexagon workloads. * Increase max size of tvm_rpc_android buffer size. * Reformat tests to be parameterized. * Comment out tests to speedup CI.
- Loading branch information
Showing
2 changed files
with
389 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,230 @@ | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
|
||
""" | ||
Test parallelizing HVX workloads and compare them to single thread examples. | ||
""" | ||
import numpy as np | ||
import tvm | ||
|
||
from tvm.script import tir as T | ||
from numpy.random import default_rng | ||
|
||
TEST_OUTPUT_TEMPLATE = "Test {} with {} operations... \n -Single Thread: {} ms \n -Parallel: {} ms\n -Speedup: {}x\n" | ||
|
||
|
||
def get_vrmpy_shape_dtypes(operations): | ||
return ((operations, 128), "uint8", (operations, 128), "uint8", (operations, 32), "int32") | ||
|
||
|
||
def get_vmpy_vadd_shape_dtype(operations): | ||
return ((operations, 128), "uint8", (operations, 128), "uint8", (operations, 128), "int16") | ||
|
||
|
||
def vmpy_expected_producer(shape, a, b): | ||
expected = np.zeros(shape, dtype="int16") | ||
for n in range(shape[0]): | ||
for i in range(0, 128, 2): | ||
expected[n, i // 2] = np.int16(a[n, i]) * np.int16(b[n, i]) | ||
for i in range(1, 128, 2): | ||
expected[n, i // 2 + 64] = np.int16(a[n, i]) * np.int16(b[n, i]) | ||
return expected | ||
|
||
|
||
def vadd_expected_producer(shape, a, b): | ||
expected = np.zeros(shape, dtype="int16") | ||
for n in range(shape[0]): | ||
for i in range(0, 128, 2): | ||
expected[n, i // 2] = np.int16(a[n, i]) + np.int16(b[n, i]) | ||
for i in range(1, 128, 2): | ||
expected[n, i // 2 + 64] = np.int16(a[n, i]) + np.int16(b[n, i]) | ||
return expected | ||
|
||
|
||
def vrmpy_expected_producer(shape, a, b): | ||
expected = np.zeros(shape, dtype="int32") | ||
for n in range(shape[0]): | ||
for i in range(32): | ||
for r in range(4): | ||
expected[n, i] = expected[n, i] + np.uint32(a[n, i * 4 + r]) * np.uint32( | ||
b[n, i * 4 + r] | ||
) | ||
return expected | ||
|
||
|
||
def get_vmpy_operator(operations): | ||
@T.prim_func | ||
def operator(a: T.handle, b: T.handle, c: T.handle) -> None: | ||
T.func_attr({"global_symbol": "main", "tir.noalias": True}) | ||
A = T.match_buffer(a, [operations, 128], dtype="uint8") | ||
B = T.match_buffer(b, [operations, 128], dtype="uint8") | ||
C = T.match_buffer(c, [operations, 128], dtype="int16") | ||
for n in T.grid(operations): | ||
with T.block("C"): | ||
vn = T.axis.remap("S", [n]) | ||
C[vn, T.ramp(0, 1, 128)] = T.call_llvm_intrin( | ||
T.llvm_lookup_intrinsic_id("llvm.hexagon.V6.vmpybusv.128B"), | ||
T.uint32(2), | ||
T.reinterpret(A[vn, T.ramp(0, 1, 128)], dtype="int32x32"), | ||
T.reinterpret(B[vn, T.ramp(0, 1, 128)], dtype="int32x32"), | ||
dtype="int16x128", | ||
) | ||
|
||
return operator | ||
|
||
|
||
def get_vadd_operator(operations): | ||
@T.prim_func | ||
def operator(a: T.handle, b: T.handle, c: T.handle) -> None: | ||
T.func_attr({"global_symbol": "main", "tir.noalias": True}) | ||
A = T.match_buffer(a, [operations, 128], dtype="uint8") | ||
B = T.match_buffer(b, [operations, 128], dtype="uint8") | ||
C = T.match_buffer(c, [operations, 128], dtype="int16") | ||
for n in T.grid(operations): | ||
with T.block("C"): | ||
vn = T.axis.remap("S", [n]) | ||
C[vn, T.ramp(0, 1, 128)] = T.call_llvm_intrin( | ||
T.llvm_lookup_intrinsic_id("llvm.hexagon.V6.vaddubh.128B"), | ||
T.uint32(2), | ||
T.reinterpret(A[vn, T.ramp(0, 1, 128)], dtype="int32x32"), | ||
T.reinterpret(B[vn, T.ramp(0, 1, 128)], dtype="int32x32"), | ||
dtype="int16x128", | ||
) | ||
|
||
return operator | ||
|
||
|
||
def get_vrmpy_operator(operations): | ||
@T.prim_func | ||
def operator(a: T.handle, b: T.handle, c: T.handle) -> None: | ||
T.func_attr({"global_symbol": "main", "tir.noalias": True}) | ||
A = T.match_buffer(a, [operations, 128], dtype="uint8") | ||
B = T.match_buffer(b, [operations, 128], dtype="uint8") | ||
C = T.match_buffer(c, [operations, 32], dtype="int32") | ||
for n in T.grid(operations): | ||
with T.block("C"): | ||
vn = T.axis.remap("S", [n]) | ||
C[vn, T.ramp(0, 1, 32)] = T.call_llvm_intrin( | ||
T.llvm_lookup_intrinsic_id("llvm.hexagon.V6.vrmpyubv.128B"), | ||
T.uint32(2), | ||
T.reinterpret(A[vn, T.ramp(0, 1, 128)], dtype="int32x32"), | ||
T.reinterpret(B[vn, T.ramp(0, 1, 128)], dtype="int32x32"), | ||
dtype="int32x32", | ||
) | ||
|
||
return operator | ||
|
||
|
||
def evaluate(hexagon_session, shape_dtypes, expected_output_producer, sch): | ||
a_shape, a_dtype, b_shape, b_dtype, c_shape, c_dtype = shape_dtypes | ||
|
||
target_hexagon = tvm.target.hexagon("v68") | ||
func_tir = tvm.build( | ||
sch.mod["main"], target=tvm.target.Target(target_hexagon, host=target_hexagon) | ||
) | ||
module = hexagon_session.load_module(func_tir) | ||
|
||
rng = default_rng() | ||
a = rng.integers(0, 16, a_shape, dtype=a_dtype) | ||
b = rng.integers(0, 16, b_shape, dtype=b_dtype) | ||
c = np.zeros(c_shape, dtype=c_dtype) | ||
|
||
a_hexagon = tvm.runtime.ndarray.array(a, device=hexagon_session.device) | ||
b_hexagon = tvm.runtime.ndarray.array(b, device=hexagon_session.device) | ||
c_hexagon = tvm.runtime.ndarray.array(c, device=hexagon_session.device) | ||
|
||
# These are reduced for CI but number=100 and repeat=10 does a good job of removing noise. | ||
number = 1 | ||
repeat = 1 | ||
|
||
timer = module.time_evaluator( | ||
"__tvm_main__", hexagon_session.device, number=number, repeat=repeat | ||
) | ||
runtime = timer(a_hexagon, b_hexagon, c_hexagon) | ||
tvm.testing.assert_allclose(c_hexagon.asnumpy(), expected_output_producer(c_shape, a, b)) | ||
|
||
return round(runtime.mean * 1000, 6) | ||
|
||
|
||
class TestMatMulVec: | ||
|
||
( | ||
operation_name, | ||
operator_producer, | ||
shape_dtypes_producer, | ||
expected_output_producer, | ||
) = tvm.testing.parameters( | ||
("vrmpy", get_vrmpy_operator, get_vrmpy_shape_dtypes, vrmpy_expected_producer), | ||
("vmpy", get_vmpy_operator, get_vmpy_vadd_shape_dtype, vmpy_expected_producer), | ||
("vadd", get_vadd_operator, get_vmpy_vadd_shape_dtype, vadd_expected_producer), | ||
) | ||
|
||
# Experimentally best split factor but all multiples of 4 perform pretty well. | ||
# This is because there are 4 HVX untis available on the device and pipelining | ||
# works best with parallels of the number of available HVX. | ||
split_factor = tvm.testing.parameter(4) | ||
|
||
# Removed most of these to speedup CI. | ||
operation_count = tvm.testing.parameter( | ||
128, | ||
# 256, | ||
# 512, | ||
# 1024, # Single thread runs faster since L2 cache can handle the entire request quickly | ||
# 2048, | ||
# 4096, # Significant performance degredation once the inputs and outputs cannot all fit in L2 | ||
# 8192, | ||
# 16384, | ||
) | ||
|
||
@tvm.testing.requires_hexagon | ||
def test( | ||
self, | ||
hexagon_session, | ||
operation_count, | ||
operation_name, | ||
operator_producer, | ||
shape_dtypes_producer, | ||
expected_output_producer, | ||
split_factor, | ||
): | ||
|
||
sch = tvm.tir.Schedule(operator_producer(operation_count)) | ||
single_thread_runtime = evaluate( | ||
hexagon_session, shape_dtypes_producer(operation_count), expected_output_producer, sch | ||
) | ||
|
||
sch = tvm.tir.Schedule(operator_producer(operation_count)) | ||
block = sch.get_block("C") | ||
b = sch.get_loops(block) | ||
bo, _ = sch.split(b[0], factors=[split_factor, None]) | ||
sch.parallel(bo) | ||
|
||
parallel_runtime = evaluate( | ||
hexagon_session, shape_dtypes_producer(operation_count), expected_output_producer, sch | ||
) | ||
|
||
speedup = round(single_thread_runtime / parallel_runtime, 2) | ||
|
||
print( | ||
TEST_OUTPUT_TEMPLATE.format( | ||
operation_name, operation_count, single_thread_runtime, parallel_runtime, speedup | ||
) | ||
) | ||
|
||
|
||
if __name__ == "__main__": | ||
tvm.testing.main() |
159 changes: 159 additions & 0 deletions
159
tests/python/contrib/test_hexagon/test_parallel_scalar.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,159 @@ | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
|
||
""" Test parallelism for multiple different scalar workloads. """ | ||
|
||
import numpy as np | ||
import tvm | ||
|
||
from tvm.script import tir as T | ||
from numpy.random import default_rng | ||
|
||
TEST_OUTPUT_TEMPLATE = "Test {} with {} operations... \n -Single Thread: {} ms \n -Parallel: {} ms\n -Speedup: {}x\n" | ||
|
||
|
||
def get_add_operator(operations): | ||
@T.prim_func | ||
def operator(a: T.handle, b: T.handle, c: T.handle) -> None: | ||
T.func_attr({"global_symbol": "main", "tir.noalias": True}) | ||
A = T.match_buffer(a, [operations], dtype="float64") | ||
B = T.match_buffer(b, [operations], dtype="float64") | ||
C = T.match_buffer(c, [operations], dtype="float64") | ||
for n in T.grid(operations): | ||
with T.block("C"): | ||
vn = T.axis.remap("S", [n]) | ||
C[vn] = A[vn] + B[vn] | ||
|
||
return operator | ||
|
||
|
||
def get_multiply_operator(operations): | ||
@T.prim_func | ||
def operator(a: T.handle, b: T.handle, c: T.handle) -> None: | ||
T.func_attr({"global_symbol": "main", "tir.noalias": True}) | ||
A = T.match_buffer(a, [operations], dtype="float64") | ||
B = T.match_buffer(b, [operations], dtype="float64") | ||
C = T.match_buffer(c, [operations], dtype="float64") | ||
for n in T.grid(operations): | ||
with T.block("C"): | ||
vn = T.axis.remap("S", [n]) | ||
C[vn] = A[vn] * B[vn] | ||
|
||
return operator | ||
|
||
|
||
def get_sub_operator(operations): | ||
@T.prim_func | ||
def operator(a: T.handle, b: T.handle, c: T.handle) -> None: | ||
T.func_attr({"global_symbol": "main", "tir.noalias": True}) | ||
A = T.match_buffer(a, [operations], dtype="float64") | ||
B = T.match_buffer(b, [operations], dtype="float64") | ||
C = T.match_buffer(c, [operations], dtype="float64") | ||
for n in T.grid(operations): | ||
with T.block("C"): | ||
vn = T.axis.remap("S", [n]) | ||
C[vn] = A[vn] - B[vn] | ||
|
||
return operator | ||
|
||
|
||
def evaluate(hexagon_session, operations, expected, sch): | ||
shape = operations | ||
dtype = "float64" | ||
|
||
target_hexagon = tvm.target.hexagon("v68") | ||
func_tir = tvm.build( | ||
sch.mod["main"], target=tvm.target.Target(target_hexagon, host=target_hexagon) | ||
) | ||
module = hexagon_session.load_module(func_tir) | ||
|
||
rng = default_rng() | ||
a = rng.random(shape, dtype=dtype) | ||
b = rng.random(shape, dtype=dtype) | ||
c = np.zeros(shape, dtype=dtype) | ||
|
||
a_hexagon = tvm.runtime.ndarray.array(a, device=hexagon_session.device) | ||
b_hexagon = tvm.runtime.ndarray.array(b, device=hexagon_session.device) | ||
c_hexagon = tvm.runtime.ndarray.array(c, device=hexagon_session.device) | ||
|
||
# These are reduced for CI but number=100 and repeat=10 does a good job of removing noise. | ||
number = 1 | ||
repeat = 1 | ||
|
||
timer = module.time_evaluator( | ||
"__tvm_main__", hexagon_session.device, number=number, repeat=repeat | ||
) | ||
runtime = timer(a_hexagon, b_hexagon, c_hexagon) | ||
|
||
tvm.testing.assert_allclose(c_hexagon.asnumpy(), expected(a, b)) | ||
|
||
return round(runtime.mean * 1000, 6) | ||
|
||
|
||
class TestMatMulVec: | ||
|
||
(operation_name, operator_producer, expected_output_producer,) = tvm.testing.parameters( | ||
("add", get_add_operator, (lambda a, b: a + b)), | ||
("mul", get_multiply_operator, (lambda a, b: a * b)), | ||
("sub", get_sub_operator, (lambda a, b: a - b)), | ||
) | ||
|
||
# Removed most of these to speedup CI. | ||
operations = tvm.testing.parameter( | ||
128, | ||
# 256, | ||
# 512, | ||
# 1024, # Single thread runs faster since L2 cache can handle the entire request quickly | ||
# 2048, | ||
# 4096, # Significant performance degredation once the inputs and outputs cannot all fit in L2 | ||
# 8192, | ||
# 16384, | ||
) | ||
|
||
split_factor = tvm.testing.parameter(4) | ||
|
||
@tvm.testing.requires_hexagon | ||
def test_add( | ||
self, | ||
hexagon_session, | ||
operation_name, | ||
operator_producer, | ||
expected_output_producer, | ||
operations, | ||
split_factor, | ||
): | ||
|
||
sch = tvm.tir.Schedule(operator_producer(operations)) | ||
single_thread_runtime = evaluate(hexagon_session, operations, expected_output_producer, sch) | ||
|
||
sch = tvm.tir.Schedule(operator_producer(operations)) | ||
block = sch.get_block("C") | ||
b = sch.get_loops(block) | ||
bo, _ = sch.split(b[0], factors=[split_factor, None]) | ||
sch.parallel(bo) | ||
parallel_runtime = evaluate(hexagon_session, operations, expected_output_producer, sch) | ||
|
||
speedup = round(single_thread_runtime / parallel_runtime, 2) | ||
print( | ||
TEST_OUTPUT_TEMPLATE.format( | ||
operation_name, operations, single_thread_runtime, parallel_runtime, speedup | ||
) | ||
) | ||
|
||
|
||
if __name__ == "__main__": | ||
tvm.testing.main() |