Skip to content

Measuring the running time of various backbone networks using the CoreML framework

Notifications You must be signed in to change notification settings

darkasevgen/Backbone-Runtime

Repository files navigation

Backbone-Runtime

This repository provides code for initializing, testing, and measuring the running time of neural networks on Apple devices.

Device

Measurements were taken using the Iphone 8 emulator on a MacBook Air (2020) M1 8GB. OS: Monterey 12.1.

Inference

During testing were open: Safari, Xcode (=> Emulator) and Terminal.

Time was measured for each model individually (i.e. there was only one model in the "models" folder).

Сonfiguration

The models were initialized using timm. MobileViT have been initialized in the cvnets repo.

The models have normalization and taking the top 5 probabilities. The models were converted using coremltools. More: ipynb.

Benchmark

Architecture family Model name MLmodel weight, MB Running time (100 starts) on emulator Iphone 8, sec Average frames / sec Metrics Interpolation
Min Max Avg ImageNet
top-1
ImageNet
top-5
MobileNet mn2_100 14.7 0.0090 0.0114 0.0100 99.86482083 72.952 91.002 bicubic
mn2_110d 18 0.0128 0.0152 0.0137 72.92339643 75.052 92.188 bicubic
mn3_rw 21.9 0.0078 0.0098 0.0087 115.1641272 75.63 92.708 bicubic
mn3_large_100_miil 21.9 0.0074 0.0090 0.0084 118.5257193 77.918 92.906 bicubic
Gernet gernet_s 32.6 0.0111 0.0188 0.0125 79.71578839 76.912 93.134 bilinear
gernet_m 84.4 0.0293 0.0397 0.0309 32.32946595 80.746 95.184 bilinear
Pit pit_xs_224 49.5 0.0469 0.0520 0.0495 20.21368422 78.188 94.166 bicubic
pit_xs_distilled_224 44 0.0464 0.0514 0.0493 20.26778795 79.304 94.366 bicubic
Hardcorenas hardcorenas_e 32.2 0.0127 0.0143 0.0134 74.36810751 77.792 93.698 bilinear
hardcorenas_f 32.7 0.0119 0.0153 0.0134 74.43488205 78.098 93.804 bilinear
LeViT levit_128s 32.8 0.0074 0.0098 0.0088 113.2892364 76.52 92.866 bicubic
levit_128 39.9 0.0105 0.0133 0.0119 83.73827357 78.486 94.006 bicubic
levit_192 46 0.0117 0.0152 0.0132 75.49154138 79.832 94.786 bicubic
levit_384 161 0.0283 0.0355 0.0297 33.61994786 82.588 96.022 bicubic
RexNet rexnet_100 19.1 0.0159 0.0175 0.0167 59.84410556 77.858 93.87 bicubic
rexnet_130 30.1 0.0218 0.0251 0.0231 43.34531065 79.5 94.682 bicubic
rexnet_150 38.8 0.0260 0.0268 0.0267 37.45697546 80.31 95.166 bicubic
rexnet_200 65.3 0.0372 0.0428 0.0388 25.76275634 81.628 95.668 bicubic
HRNet hrnet_w18_s 52.7 0.0231 0.0298 0.0253 39.49241333 72.34 90.678 bilinear
hrnet_w18_s2 62.3 0.0367 0.0479 0.0416 24.04666871 75.118 92.416 bilinear
EfficientNet tf_effnet_b0_ns 21.1 0.0177 0.0246 0.0188 53.2333286 78.658 94.376 bicubic
tf_effnet_v2_b0 28.5 0.0164 0.0200 0.0184 54.39716128 78.36 94.024 bicubic
tf_effnet_v2_b1 32.4 0.0218 0.0264 0.0232 43.19406317 79.462 94.726 bicubic
effnet_b1_pruned 25.3 0.0161 0.0178 0.0170 58.84248773 78.24 93.832 bicubic
MobileViT mobilevit_xxs 5.1 0.0187 0.0242 0.0201 49.69032577 69 - bilinear
mobilevit_xs 9.3 0.0341 0.0401 0.0365 27.4318441 74.8 - bilinear
mobilevit_s 22.3 0.0444 0.0544 0.0464 21.56989809 78.4 - bilinear
Ese ese_vovnet19b_dw 26.2 0.0142 0.0174 0.0150 66.58710872 76.8 93.272 bicubic
EcaresNet ecaresnet50d_pruned 79.7 0.0346 0.0397 0.0367 27.26925843 79.71 94.88 bicubic

About

Measuring the running time of various backbone networks using the CoreML framework

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published