forked from PreferredAI/cornac
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add NCF_PyTorch models (PreferredAI#536)
Add PyTorch backend for NCF models --------- Co-authored-by: tqtg <tuantq.vnu@gmail.com>
- Loading branch information
Showing
10 changed files
with
529 additions
and
232 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,5 +1,6 @@ | ||
tests/vocab.pkl | ||
.idea/ | ||
.vscode/ | ||
|
||
# Byte-compiled / optimized / DLL files | ||
__pycache__/ | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -74,4 +74,3 @@ | |
"FM model is only supported on Linux.\n" | ||
+ "Windows executable can be found at http://www.libfm.org." | ||
) | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,176 @@ | ||
import torch | ||
import torch.nn as nn | ||
|
||
|
||
optimizer_dict = { | ||
"sgd": torch.optim.SGD, | ||
"adam": torch.optim.Adam, | ||
"rmsprop": torch.optim.RMSprop, | ||
"adagrad": torch.optim.Adagrad, | ||
} | ||
|
||
activation_functions = { | ||
"sigmoid": nn.Sigmoid(), | ||
"tanh": nn.Tanh(), | ||
"elu": nn.ELU(), | ||
"selu": nn.SELU(), | ||
"relu": nn.ReLU(), | ||
"relu6": nn.ReLU6(), | ||
"leakyrelu": nn.LeakyReLU(), | ||
} | ||
|
||
|
||
class GMF(nn.Module): | ||
def __init__( | ||
self, | ||
num_users: int, | ||
num_items: int, | ||
num_factors: int = 8, | ||
): | ||
super(GMF, self).__init__() | ||
|
||
self.num_users = num_users | ||
self.num_items = num_items | ||
self.user_embedding = nn.Embedding(num_users, num_factors) | ||
self.item_embedding = nn.Embedding(num_items, num_factors) | ||
|
||
self.logit = nn.Linear(num_factors, 1) | ||
self.Sigmoid = nn.Sigmoid() | ||
|
||
self._init_weight() | ||
|
||
def _init_weight(self): | ||
nn.init.normal_(self.user_embedding.weight, std=1e-2) | ||
nn.init.normal_(self.item_embedding.weight, std=1e-2) | ||
nn.init.normal_(self.logit.weight, std=1e-2) | ||
|
||
def from_pretrained(self, pretrained_gmf): | ||
self.user_embedding.weight.data.copy_(pretrained_gmf.user_embedding.weight) | ||
self.item_embedding.weight.data.copy_(pretrained_gmf.item_embedding.weight) | ||
self.logit.weight.data.copy_(pretrained_gmf.logit.weight) | ||
self.logit.bias.data.copy_(pretrained_gmf.logit.bias) | ||
|
||
def h(self, users, items): | ||
return self.user_embedding(users) * self.item_embedding(items) | ||
|
||
def forward(self, users, items): | ||
h = self.h(users, items) | ||
output = self.Sigmoid(self.logit(h)).view(-1) | ||
return output | ||
|
||
|
||
class MLP(nn.Module): | ||
def __init__( | ||
self, | ||
num_users: int, | ||
num_items: int, | ||
layers=(64, 32, 16, 8), | ||
act_fn="relu", | ||
): | ||
super(MLP, self).__init__() | ||
|
||
self.num_users = num_users | ||
self.num_items = num_items | ||
self.user_embedding = nn.Embedding(num_users, layers[0] // 2) | ||
self.item_embedding = nn.Embedding(num_items, layers[0] // 2) | ||
|
||
mlp_layers = [] | ||
for idx, factor in enumerate(layers[:-1]): | ||
mlp_layers.append(nn.Linear(factor, layers[idx + 1])) | ||
mlp_layers.append(activation_functions[act_fn.lower()]) | ||
|
||
# unpacking layers in to torch.nn.Sequential | ||
self.mlp_model = nn.Sequential(*mlp_layers) | ||
|
||
self.logit = nn.Linear(layers[-1], 1) | ||
self.Sigmoid = nn.Sigmoid() | ||
|
||
self._init_weight() | ||
|
||
def _init_weight(self): | ||
nn.init.normal_(self.user_embedding.weight, std=1e-2) | ||
nn.init.normal_(self.item_embedding.weight, std=1e-2) | ||
for layer in self.mlp_model: | ||
if isinstance(layer, nn.Linear): | ||
nn.init.xavier_uniform_(layer.weight) | ||
nn.init.normal_(self.logit.weight, std=1e-2) | ||
|
||
def from_pretrained(self, pretrained_mlp): | ||
self.user_embedding.weight.data.copy_(pretrained_mlp.user_embedding.weight) | ||
self.item_embedding.weight.data.copy_(pretrained_mlp.item_embedding.weight) | ||
for layer, pretrained_layer in zip(self.mlp_model, pretrained_mlp.mlp_model): | ||
if isinstance(layer, nn.Linear) and isinstance(pretrained_layer, nn.Linear): | ||
layer.weight.data.copy_(pretrained_layer.weight) | ||
layer.bias.data.copy_(pretrained_layer.bias) | ||
self.logit.weight.data.copy_(pretrained_mlp.logit.weight) | ||
self.logit.bias.data.copy_(pretrained_mlp.logit.bias) | ||
|
||
def h(self, users, items): | ||
embed_user = self.user_embedding(users) | ||
embed_item = self.item_embedding(items) | ||
embed_input = torch.cat((embed_user, embed_item), dim=-1) | ||
return self.mlp_model(embed_input) | ||
|
||
def forward(self, users, items): | ||
h = self.h(users, items) | ||
output = self.Sigmoid(self.logit(h)).view(-1) | ||
return output | ||
|
||
def __call__(self, *args): | ||
return self.forward(*args) | ||
|
||
|
||
class NeuMF(nn.Module): | ||
def __init__( | ||
self, | ||
num_users: int, | ||
num_items: int, | ||
num_factors: int = 8, | ||
layers=(64, 32, 16, 8), | ||
act_fn="relu", | ||
): | ||
super(NeuMF, self).__init__() | ||
|
||
# layer for MLP | ||
if layers is None: | ||
layers = [64, 32, 16, 8] | ||
if num_factors is None: | ||
num_factors = layers[-1] | ||
|
||
assert layers[-1] == num_factors | ||
|
||
self.logit = nn.Linear(num_factors + layers[-1], 1) | ||
self.Sigmoid = nn.Sigmoid() | ||
|
||
self.gmf = GMF(num_users, num_items, num_factors) | ||
self.mlp = MLP( | ||
num_users=num_users, num_items=num_items, layers=layers, act_fn=act_fn | ||
) | ||
|
||
nn.init.normal_(self.logit.weight, std=1e-2) | ||
|
||
def from_pretrained(self, pretrained_gmf, pretrained_mlp, alpha): | ||
self.gmf.from_pretrained(pretrained_gmf) | ||
self.mlp.from_pretrained(pretrained_mlp) | ||
logit_weight = torch.cat( | ||
[ | ||
alpha * self.gmf.logit.weight, | ||
(1.0 - alpha) * self.mlp.logit.weight, | ||
], | ||
dim=1, | ||
) | ||
logit_bias = alpha * self.gmf.logit.bias + (1.0 - alpha) * self.mlp.logit.bias | ||
self.logit.weight.data.copy_(logit_weight) | ||
self.logit.bias.data.copy_(logit_bias) | ||
|
||
def forward(self, users, items, gmf_users=None): | ||
# gmf_users is there to take advantage of broadcasting | ||
h_gmf = ( | ||
self.gmf.h(users, items) | ||
if gmf_users is None | ||
else self.gmf.h(gmf_users, items) | ||
) | ||
h_mlp = self.mlp.h(users, items) | ||
h = torch.cat([h_gmf, h_mlp], dim=-1) | ||
output = self.Sigmoid(self.logit(h)).view(-1) | ||
return output |
File renamed without changes.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.