Skip to content

Commit

Permalink
Add NCF_PyTorch models (PreferredAI#536)
Browse files Browse the repository at this point in the history
Add PyTorch backend for NCF models

---------

Co-authored-by: tqtg <tuantq.vnu@gmail.com>
  • Loading branch information
2 people authored and darrylong committed Oct 23, 2023
1 parent 1a6c90f commit a3aa349
Show file tree
Hide file tree
Showing 10 changed files with 529 additions and 232 deletions.
1 change: 1 addition & 0 deletions .gitignore
Original file line number Diff line number Diff line change
@@ -1,5 +1,6 @@
tests/vocab.pkl
.idea/
.vscode/

# Byte-compiled / optimized / DLL files
__pycache__/
Expand Down
1 change: 0 additions & 1 deletion cornac/models/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -74,4 +74,3 @@
"FM model is only supported on Linux.\n"
+ "Windows executable can be found at http://www.libfm.org."
)

176 changes: 176 additions & 0 deletions cornac/models/ncf/backend_pt.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,176 @@
import torch
import torch.nn as nn


optimizer_dict = {
"sgd": torch.optim.SGD,
"adam": torch.optim.Adam,
"rmsprop": torch.optim.RMSprop,
"adagrad": torch.optim.Adagrad,
}

activation_functions = {
"sigmoid": nn.Sigmoid(),
"tanh": nn.Tanh(),
"elu": nn.ELU(),
"selu": nn.SELU(),
"relu": nn.ReLU(),
"relu6": nn.ReLU6(),
"leakyrelu": nn.LeakyReLU(),
}


class GMF(nn.Module):
def __init__(
self,
num_users: int,
num_items: int,
num_factors: int = 8,
):
super(GMF, self).__init__()

self.num_users = num_users
self.num_items = num_items
self.user_embedding = nn.Embedding(num_users, num_factors)
self.item_embedding = nn.Embedding(num_items, num_factors)

self.logit = nn.Linear(num_factors, 1)
self.Sigmoid = nn.Sigmoid()

self._init_weight()

def _init_weight(self):
nn.init.normal_(self.user_embedding.weight, std=1e-2)
nn.init.normal_(self.item_embedding.weight, std=1e-2)
nn.init.normal_(self.logit.weight, std=1e-2)

def from_pretrained(self, pretrained_gmf):
self.user_embedding.weight.data.copy_(pretrained_gmf.user_embedding.weight)
self.item_embedding.weight.data.copy_(pretrained_gmf.item_embedding.weight)
self.logit.weight.data.copy_(pretrained_gmf.logit.weight)
self.logit.bias.data.copy_(pretrained_gmf.logit.bias)

def h(self, users, items):
return self.user_embedding(users) * self.item_embedding(items)

def forward(self, users, items):
h = self.h(users, items)
output = self.Sigmoid(self.logit(h)).view(-1)
return output


class MLP(nn.Module):
def __init__(
self,
num_users: int,
num_items: int,
layers=(64, 32, 16, 8),
act_fn="relu",
):
super(MLP, self).__init__()

self.num_users = num_users
self.num_items = num_items
self.user_embedding = nn.Embedding(num_users, layers[0] // 2)
self.item_embedding = nn.Embedding(num_items, layers[0] // 2)

mlp_layers = []
for idx, factor in enumerate(layers[:-1]):
mlp_layers.append(nn.Linear(factor, layers[idx + 1]))
mlp_layers.append(activation_functions[act_fn.lower()])

# unpacking layers in to torch.nn.Sequential
self.mlp_model = nn.Sequential(*mlp_layers)

self.logit = nn.Linear(layers[-1], 1)
self.Sigmoid = nn.Sigmoid()

self._init_weight()

def _init_weight(self):
nn.init.normal_(self.user_embedding.weight, std=1e-2)
nn.init.normal_(self.item_embedding.weight, std=1e-2)
for layer in self.mlp_model:
if isinstance(layer, nn.Linear):
nn.init.xavier_uniform_(layer.weight)
nn.init.normal_(self.logit.weight, std=1e-2)

def from_pretrained(self, pretrained_mlp):
self.user_embedding.weight.data.copy_(pretrained_mlp.user_embedding.weight)
self.item_embedding.weight.data.copy_(pretrained_mlp.item_embedding.weight)
for layer, pretrained_layer in zip(self.mlp_model, pretrained_mlp.mlp_model):
if isinstance(layer, nn.Linear) and isinstance(pretrained_layer, nn.Linear):
layer.weight.data.copy_(pretrained_layer.weight)
layer.bias.data.copy_(pretrained_layer.bias)
self.logit.weight.data.copy_(pretrained_mlp.logit.weight)
self.logit.bias.data.copy_(pretrained_mlp.logit.bias)

def h(self, users, items):
embed_user = self.user_embedding(users)
embed_item = self.item_embedding(items)
embed_input = torch.cat((embed_user, embed_item), dim=-1)
return self.mlp_model(embed_input)

def forward(self, users, items):
h = self.h(users, items)
output = self.Sigmoid(self.logit(h)).view(-1)
return output

def __call__(self, *args):
return self.forward(*args)


class NeuMF(nn.Module):
def __init__(
self,
num_users: int,
num_items: int,
num_factors: int = 8,
layers=(64, 32, 16, 8),
act_fn="relu",
):
super(NeuMF, self).__init__()

# layer for MLP
if layers is None:
layers = [64, 32, 16, 8]
if num_factors is None:
num_factors = layers[-1]

assert layers[-1] == num_factors

self.logit = nn.Linear(num_factors + layers[-1], 1)
self.Sigmoid = nn.Sigmoid()

self.gmf = GMF(num_users, num_items, num_factors)
self.mlp = MLP(
num_users=num_users, num_items=num_items, layers=layers, act_fn=act_fn
)

nn.init.normal_(self.logit.weight, std=1e-2)

def from_pretrained(self, pretrained_gmf, pretrained_mlp, alpha):
self.gmf.from_pretrained(pretrained_gmf)
self.mlp.from_pretrained(pretrained_mlp)
logit_weight = torch.cat(
[
alpha * self.gmf.logit.weight,
(1.0 - alpha) * self.mlp.logit.weight,
],
dim=1,
)
logit_bias = alpha * self.gmf.logit.bias + (1.0 - alpha) * self.mlp.logit.bias
self.logit.weight.data.copy_(logit_weight)
self.logit.bias.data.copy_(logit_bias)

def forward(self, users, items, gmf_users=None):
# gmf_users is there to take advantage of broadcasting
h_gmf = (
self.gmf.h(users, items)
if gmf_users is None
else self.gmf.h(gmf_users, items)
)
h_mlp = self.mlp.h(users, items)
h = torch.cat([h_gmf, h_mlp], dim=-1)
output = self.Sigmoid(self.logit(h)).view(-1)
return output
File renamed without changes.
106 changes: 48 additions & 58 deletions cornac/models/ncf/recom_gmf.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,9 +27,9 @@ class GMF(NCFBase):
----------
num_factors: int, optional, default: 8
Embedding size of MF model.
regs: float, optional, default: 0.
Regularization for user and item embeddings.
reg: float, optional, default: 0.
Regularization (weight_decay).
num_epochs: int, optional, default: 20
Number of epochs.
Expand All @@ -45,7 +45,10 @@ class GMF(NCFBase):
learner: str, optional, default: 'adam'
Specify an optimizer: adagrad, adam, rmsprop, sgd
backend: str, optional, default: 'tensorflow'
Backend used for model training: tensorflow, pytorch
early_stopping: {min_delta: float, patience: int}, optional, default: None
If `None`, no early stopping. Meaning of the arguments:
Expand Down Expand Up @@ -77,12 +80,13 @@ def __init__(
self,
name="GMF",
num_factors=8,
regs=(0.0, 0.0),
reg=0.0,
num_epochs=20,
batch_size=256,
num_neg=4,
lr=0.001,
learner="adam",
backend="tensorflow",
early_stopping=None,
trainable=True,
verbose=True,
Expand All @@ -97,17 +101,21 @@ def __init__(
num_neg=num_neg,
lr=lr,
learner=learner,
backend=backend,
early_stopping=early_stopping,
seed=seed,
)
self.num_factors = num_factors
self.regs = regs
self.reg = reg

def _build_graph(self):
########################
## TensorFlow backend ##
########################
def _build_graph_tf(self):
import tensorflow.compat.v1 as tf
from .ops import gmf, loss_fn, train_fn
from .backend_tf import gmf, loss_fn, train_fn

super()._build_graph()
self.graph = tf.Graph()
with self.graph.as_default():
tf.set_random_seed(self.seed)

Expand All @@ -123,8 +131,8 @@ def _build_graph(self):
num_users=self.num_users,
num_items=self.num_items,
emb_size=self.num_factors,
reg_user=self.regs[0],
reg_item=self.regs[1],
reg_user=self.reg,
reg_item=self.reg,
seed=self.seed,
)

Expand All @@ -144,50 +152,32 @@ def _build_graph(self):
self.initializer = tf.global_variables_initializer()
self.saver = tf.train.Saver()

self._sess_init()

def score(self, user_idx, item_idx=None):
"""Predict the scores/ratings of a user for an item.
Parameters
----------
user_idx: int, required
The index of the user for whom to perform score prediction.
item_idx: int, optional, default: None
The index of the item for which to perform score prediction.
If None, scores for all known items will be returned.
Returns
-------
res : A scalar or a Numpy array
Relative scores that the user gives to the item or to all known items
"""
if item_idx is None:
if self.train_set.is_unk_user(user_idx):
raise ScoreException(
"Can't make score prediction for (user_id=%d)" % user_idx
)

known_item_scores = self.sess.run(
self.prediction,
feed_dict={
self.user_id: [user_idx],
self.item_id: np.arange(self.train_set.num_items),
},
)
return known_item_scores.ravel()
else:
if self.train_set.is_unk_user(user_idx) or self.train_set.is_unk_item(
item_idx
):
raise ScoreException(
"Can't make score prediction for (user_id=%d, item_id=%d)"
% (user_idx, item_idx)
)

user_pred = self.sess.run(
self.prediction,
feed_dict={self.user_id: [user_idx], self.item_id: [item_idx]},
)
return user_pred.ravel()
self._sess_init_tf()

def _score_tf(self, user_idx, item_idx):
feed_dict = {
self.user_id: [user_idx],
self.item_id: np.arange(self.num_items) if item_idx is None else [item_idx],
}
return self.sess.run(self.prediction, feed_dict=feed_dict)

#####################
## PyTorch backend ##
#####################
def _build_model_pt(self):
from .backend_pt import GMF

return GMF(self.num_users, self.num_items, self.num_factors)

def _score_pt(self, user_idx, item_idx):
import torch

with torch.no_grad():
users = torch.tensor(user_idx).unsqueeze(0).to(self.device)
items = (
torch.from_numpy(np.arange(self.num_items))
if item_idx is None
else torch.tensor(item_idx).unsqueeze(0)
).to(self.device)
output = self.model(users, items)
return output.squeeze().cpu().numpy()
Loading

0 comments on commit a3aa349

Please sign in to comment.