Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Refactor ConstraintSolver: decouple LCP solver from ConstraintSolver #1099

Merged
merged 7 commits into from
Aug 24, 2018
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 4 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,10 @@

### DART 6.7.0 (201X-XX-XX)

* Dynamics

* Refactor constraint solver: [#1099](https://github.com/dartsim/dart/pull/1099)

* GUI

* Reorganized OpenGL and GLUT files: [#1088](https://github.com/dartsim/dart/pull/1088)
Expand Down
368 changes: 368 additions & 0 deletions dart/constraint/BoxedLcpConstraintSolver.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,368 @@
/*
* Copyright (c) 2011-2018, The DART development contributors
* All rights reserved.
*
* The list of contributors can be found at:
* https://github.com/dartsim/dart/blob/master/LICENSE
*
* This file is provided under the following "BSD-style" License:
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/

#include "dart/constraint/BoxedLcpConstraintSolver.hpp"

#include <cassert>
#ifndef NDEBUG
#include <iomanip>
#include <iostream>
#endif

#include "dart/external/odelcpsolver/lcp.h"

#include "dart/common/Console.hpp"
#include "dart/constraint/ConstraintBase.hpp"
#include "dart/constraint/ConstrainedGroup.hpp"
#include "dart/constraint/DantzigBoxedLcpSolver.hpp"
#include "dart/lcpsolver/Lemke.hpp"

namespace dart {
namespace constraint {

//==============================================================================
BoxedLcpConstraintSolver::BoxedLcpConstraintSolver(
double timeStep, BoxedLcpSolverPtr boxedLcpSolver)
: ConstraintSolver(timeStep), mBoxedLcpSolver(std::move(boxedLcpSolver))
{
if (!mBoxedLcpSolver)
mBoxedLcpSolver = std::make_shared<DantzigBoxedLcpSolver>();
}

//==============================================================================
void BoxedLcpConstraintSolver::setBoxedLcpSolver(
BoxedLcpSolverPtr lcpSolver)
{
if (!lcpSolver)
{
dtwarn << "[BoxedLcpConstraintSolver::setBoxedLcpSolver] "
<< "nullptr for boxed LCP solver is not allowed.";
return;
}

mBoxedLcpSolver = std::move(lcpSolver);
}

//==============================================================================
ConstBoxedLcpSolverPtr BoxedLcpConstraintSolver::getBoxedLcpSolver() const
{
return mBoxedLcpSolver;
}

//==============================================================================
void BoxedLcpConstraintSolver::solveConstrainedGroup(
ConstrainedGroup& group)
{
// Build LCP terms by aggregating them from constraints
std::size_t numConstraints = group.getNumConstraints();
std::size_t n = group.getTotalDimension();

// If there is no constraint, then just return.
if (0u == n)
return;

int nSkip = dPAD(n);
double* A = new double[n * nSkip];
double* x = new double[n];
double* b = new double[n];
double* w = new double[n];
double* lo = new double[n];
double* hi = new double[n];
int* findex = new int[n];

// Set w to 0 and findex to -1
#ifndef NDEBUG
std::memset(A, 0.0, n * nSkip * sizeof(double));
#endif
std::memset(w, 0.0, n * sizeof(double));
std::memset(findex, -1, n * sizeof(int));

// Compute offset indices
std::size_t* offset = new std::size_t[n];
offset[0] = 0;
// std::cout << "offset[" << 0 << "]: " << offset[0] << std::endl;
for (std::size_t i = 1; i < numConstraints; ++i)
{
const ConstraintBasePtr& constraint = group.getConstraint(i - 1);
assert(constraint->getDimension() > 0);
offset[i] = offset[i - 1] + constraint->getDimension();
// std::cout << "offset[" << i << "]: " << offset[i] << std::endl;
}

// For each constraint
ConstraintInfo constInfo;
constInfo.invTimeStep = 1.0 / mTimeStep;
for (std::size_t i = 0; i < numConstraints; ++i)
{
const ConstraintBasePtr& constraint = group.getConstraint(i);

constInfo.x = x + offset[i];
constInfo.lo = lo + offset[i];
constInfo.hi = hi + offset[i];
constInfo.b = b + offset[i];
constInfo.findex = findex + offset[i];
constInfo.w = w + offset[i];

// Fill vectors: lo, hi, b, w
constraint->getInformation(&constInfo);

// Fill a matrix by impulse tests: A
constraint->excite();
for (std::size_t j = 0; j < constraint->getDimension(); ++j)
{
// Adjust findex for global index
if (findex[offset[i] + j] >= 0)
findex[offset[i] + j] += offset[i];

// Apply impulse for mipulse test
constraint->applyUnitImpulse(j);

// Fill upper triangle blocks of A matrix
int index = nSkip * (offset[i] + j) + offset[i];
constraint->getVelocityChange(A + index, true);
for (std::size_t k = i + 1; k < numConstraints; ++k)
{
index = nSkip * (offset[i] + j) + offset[k];
group.getConstraint(k)->getVelocityChange(A + index, false);
}

// Filling symmetric part of A matrix
for (std::size_t k = 0; k < i; ++k)
{
for (std::size_t l = 0; l < group.getConstraint(k)->getDimension(); ++l)
{
int index1 = nSkip * (offset[i] + j) + offset[k] + l;
int index2 = nSkip * (offset[k] + l) + offset[i] + j;

A[index1] = A[index2];
}
}
}

assert(isSymmetric(n, A, offset[i],
offset[i] + constraint->getDimension() - 1));

constraint->unexcite();
}

assert(isSymmetric(n, A));

// Print LCP formulation
// dtdbg << "Before solve:" << std::endl;
// print(n, A, x, lo, hi, b, w, findex);
// std::cout << std::endl;

// Solve LCP using ODE's Dantzig algorithm
assert(mBoxedLcpSolver);
mBoxedLcpSolver->solve(n, A, x, b, 0, lo, hi, findex);

// Print LCP formulation
// dtdbg << "After solve:" << std::endl;
// print(n, A, x, lo, hi, b, w, findex);
// std::cout << std::endl;

// Apply constraint impulses
for (std::size_t i = 0; i < numConstraints; ++i)
{
const ConstraintBasePtr& constraint = group.getConstraint(i);
constraint->applyImpulse(x + offset[i]);
constraint->excite();
}

delete[] offset;

delete[] A;
delete[] x;
delete[] b;
delete[] w;
delete[] lo;
delete[] hi;
delete[] findex;
}

//==============================================================================
#ifndef NDEBUG
bool BoxedLcpConstraintSolver::isSymmetric(std::size_t n, double* A)
{
std::size_t nSkip = dPAD(n);
for (std::size_t i = 0; i < n; ++i)
{
for (std::size_t j = 0; j < n; ++j)
{
if (std::abs(A[nSkip * i + j] - A[nSkip * j + i]) > 1e-6)
{
std::cout << "A: " << std::endl;
for (std::size_t k = 0; k < n; ++k)
{
for (std::size_t l = 0; l < nSkip; ++l)
{
std::cout << std::setprecision(4) << A[k * nSkip + l] << " ";
}
std::cout << std::endl;
}

std::cout << "A(" << i << ", " << j << "): " << A[nSkip * i + j] << std::endl;
std::cout << "A(" << j << ", " << i << "): " << A[nSkip * j + i] << std::endl;
return false;
}
}
}

return true;
}

//==============================================================================
bool BoxedLcpConstraintSolver::isSymmetric(
std::size_t n, double* A,
std::size_t begin, std::size_t end)
{
std::size_t nSkip = dPAD(n);
for (std::size_t i = begin; i <= end; ++i)
{
for (std::size_t j = begin; j <= end; ++j)
{
if (std::abs(A[nSkip * i + j] - A[nSkip * j + i]) > 1e-6)
{
std::cout << "A: " << std::endl;
for (std::size_t k = 0; k < n; ++k)
{
for (std::size_t l = 0; l < nSkip; ++l)
{
std::cout << std::setprecision(4) << A[k * nSkip + l] << " ";
}
std::cout << std::endl;
}

std::cout << "A(" << i << ", " << j << "): " << A[nSkip * i + j] << std::endl;
std::cout << "A(" << j << ", " << i << "): " << A[nSkip * j + i] << std::endl;
return false;
}
}
}

return true;
}

//==============================================================================
void BoxedLcpConstraintSolver::print(
std::size_t n, double* A, double* x,
double* /*lo*/, double* /*hi*/, double* b,
double* w, int* findex)
{
std::size_t nSkip = dPAD(n);
std::cout << "A: " << std::endl;
for (std::size_t i = 0; i < n; ++i)
{
for (std::size_t j = 0; j < nSkip; ++j)
{
std::cout << std::setprecision(4) << A[i * nSkip + j] << " ";
}
std::cout << std::endl;
}

std::cout << "b: ";
for (std::size_t i = 0; i < n; ++i)
{
std::cout << std::setprecision(4) << b[i] << " ";
}
std::cout << std::endl;

std::cout << "w: ";
for (std::size_t i = 0; i < n; ++i)
{
std::cout << w[i] << " ";
}
std::cout << std::endl;

std::cout << "x: ";
for (std::size_t i = 0; i < n; ++i)
{
std::cout << x[i] << " ";
}
std::cout << std::endl;

// std::cout << "lb: ";
// for (int i = 0; i < dim; ++i)
// {
// std::cout << lb[i] << " ";
// }
// std::cout << std::endl;

// std::cout << "ub: ";
// for (int i = 0; i < dim; ++i)
// {
// std::cout << ub[i] << " ";
// }
// std::cout << std::endl;

std::cout << "frictionIndex: ";
for (std::size_t i = 0; i < n; ++i)
{
std::cout << findex[i] << " ";
}
std::cout << std::endl;

double* Ax = new double[n];

for (std::size_t i = 0; i < n; ++i)
{
Ax[i] = 0.0;
}

for (std::size_t i = 0; i < n; ++i)
{
for (std::size_t j = 0; j < n; ++j)
{
Ax[i] += A[i * nSkip + j] * x[j];
}
}

std::cout << "Ax : ";
for (std::size_t i = 0; i < n; ++i)
{
std::cout << Ax[i] << " ";
}
std::cout << std::endl;

std::cout << "b + w: ";
for (std::size_t i = 0; i < n; ++i)
{
std::cout << b[i] + w[i] << " ";
}
std::cout << std::endl;

delete[] Ax;
}
#endif

} // namespace constraint
} // namespace dart
Loading