Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add complex number support to tanh #458

Merged
merged 3 commits into from
Aug 22, 2022
Merged

Add complex number support to tanh #458

merged 3 commits into from
Aug 22, 2022

Conversation

kgryte
Copy link
Contributor

@kgryte kgryte commented Jun 21, 2022

This PR

  • adds complex number support to tanh by documenting special cases. The hyperbolic tangent is an analytical function in the complex plane and has no branch cuts.
  • updates the input and output array data types to be any floating-point data type, not just real-valued floating-point data types.
  • derives special cases from C99 and tested against NumPy (script found below).
  • adds a warning concerning two special cases where results may differ depending on which C version an array library compiles against (for those libraries which are C compiled).
import numpy as np
import math

def is_equal_float(x, y):
    """Test whether two floating-point numbers are equal with special consideration for zeros and NaNs.

    Parameters
    ----------
    x : float
        First input number.
    y : float
        Second input number.

    Returns
    -------
    bool
        Boolean indicating whether two floating-point numbers are equal.

    Examples
    --------
    >>> is_equal_float(0.0, -0.0)
    False
    >>> is_equal_float(-0.0, -0.0)
    True
    """
    # Handle +-0:
    if x == 0.0 and y == 0.0:
        return math.copysign(1.0, x) == math.copysign(1.0, y)

    # Handle NaNs:
    if x != x:
        return y != y

    # Everything else, including infinities:
    return x == y


def is_equal(x, y):
    """Test whether two complex numbers are equal with special consideration for zeros and NaNs.

    Parameters
    ----------
    x : complex
        First input number.
    y : complex
        Second input number.

    Returns
    -------
    bool
        Boolean indicating whether two complex numbers are equal.

    Examples
    --------
    >>> import numpy as np
    >>> is_equal(complex(np.nan, np.nan), complex(np.nan, np.nan))
    True
    """
    return is_equal_float(x.real, y.real) and is_equal_float(x.imag, y.imag)


# Strided array consisting of input values and expected values:
values = [
    complex(0.0, 0.0),        # 0
    complex(0.0, 0.0),        # 0
    
    complex(-0.0, -0.0),      # 1
    complex(-0.0, -0.0),      # 1
    
    complex(1.0, np.inf),     # 2
    complex(np.nan, np.nan),  # 2
    
    complex(0.0, np.inf),     # 3
    complex(0.0, np.nan),     # 3, seems to be a bug in NumPy, which returns `NaN + NaN j`; however, this does match old C99 behavior (see https://www.open-std.org/jtc1/sc22/wg14/www/docs/n1892.htm#dr_471)
    
    complex(1.0, np.nan),     # 4
    complex(np.nan, np.nan),  # 4
    
    complex(0.0, np.nan),     # 5
    complex(0.0, np.nan),     # 5 seems to be a bug in NumPy, which returns `NaN + NaN j`; however, this does match old C99 behavior (see https://www.open-std.org/jtc1/sc22/wg14/www/docs/n1892.htm#dr_471)
    
    complex(np.inf, 1.0),     # 6
    complex(1.0, 0.0),        # 6
    
    complex(np.inf, np.inf),  # 7
    complex(1.0, -0.0),       # 7
    
    complex(np.inf, np.nan),  # 8
    complex(1.0, 0.0),        # 8
    
    complex(np.nan, 0.0),     # 9
    complex(np.nan, 0.0),     # 9
    
    complex(np.nan, 1.0),     # 10
    complex(np.nan, np.nan),  # 10

    complex(np.nan, np.nan),  # 11
    complex(np.nan, np.nan)   # 11
]

for i in range(len(values)//2):
    j = i * 2
    v = values[j]
    e = values[j+1]
    actual = np.tanh(v)
    print('Index: {index}'.format(index=str(i)))
    print('Value: {value}'.format(value=str(v)))
    print('Actual: {actual}'.format(actual=str(actual)))
    print('Expected: {expected}'.format(expected=str(e)))
    print('Equal: {is_equal}'.format(is_equal=str(is_equal(actual, e))))
    print('\n')
Index: 0
Value: 0j
Actual: 0j
Expected: 0j
Equal: True


Index: 1
Value: (-0-0j)
Actual: (-0-0j)
Expected: (-0-0j)
Equal: True


Index: 2
Value: (1+infj)
Actual: (nan+nanj)
Expected: (nan+nanj)
Equal: True


Index: 3
Value: infj
Actual: (nan+nanj)
Expected: nanj
Equal: False


Index: 4
Value: (1+nanj)
Actual: (nan+nanj)
Expected: (nan+nanj)
Equal: True


Index: 5
Value: nanj
Actual: (nan+nanj)
Expected: nanj
Equal: False


Index: 6
Value: (inf+1j)
Actual: (1+0j)
Expected: (1+0j)
Equal: True


/path/to/ctanh.py:107: RuntimeWarning: invalid value encountered in tanh
  actual = np.tanh(v)
Index: 7
Value: (inf+infj)
Actual: (1-0j)
Expected: (1-0j)
Equal: True


Index: 8
Value: (inf+nanj)
Actual: (1+0j)
Expected: (1+0j)
Equal: True


Index: 9
Value: (nan+0j)
Actual: (nan+0j)
Expected: (nan+0j)
Equal: True


Index: 10
Value: (nan+1j)
Actual: (nan+nanj)
Expected: (nan+nanj)
Equal: True


Index: 11
Value: (nan+nanj)
Actual: (nan+nanj)
Expected: (nan+nanj)
Equal: True

Notes

  • NumPy deviates from special behavior in two cases: 0 + inf j and 0 + NaN j. NumPy adheres to old C99 behavior; however, this was corrected in the C standard in 2014.

@kgryte kgryte added API change Changes to existing functions or objects in the API. topic: Complex Data Types Complex number data types. labels Jun 21, 2022
@kgryte
Copy link
Contributor Author

kgryte commented Aug 22, 2022

As the changes in this PR are straightforward (no branch cuts, etc) and this PR has been allowed time for review, will go ahead and merge. Any further modifications can be addressed in subsequent PRs...

@kgryte kgryte merged commit 9dc714e into main Aug 22, 2022
@kgryte kgryte deleted the cmplx-tanh branch August 22, 2022 18:59
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
API change Changes to existing functions or objects in the API. topic: Complex Data Types Complex number data types.
Projects
None yet
Development

Successfully merging this pull request may close these issues.

1 participant