-
Notifications
You must be signed in to change notification settings - Fork 1
Home
The new gpu back end of theano is not supported by this version.
$ pip install -r requirements.txtConfiguration scripts depend on the utility scripts dataset_utils.py modeltemplate.py for their function, it is suggested to have them in the same directory as the configuration scripts or the one up (i.e cd ..).
Clustering configurations depend on *.npy files as input (see more on data access), for all experiment configurations we assume that the config file for the running experiment exist (see more on data access). In order to assume availability some configurations (e.g Stacked autoencoders) have each component running individually.
$ python autoencoder.py -i <config_path>.ini -t train/test | tee <experiment_name>.txtOne liner
$ for i in <range from zero to num of autoencoders>;do python autoencoder.py -i <config_path>$i.ini -t train/test | tee autoenc_$i.txt;done && python stackedautoencoders.py -i <config_path>.ini -n <number of autoencoders> -t train/test -p <prefix_of_invidual_autoenc_config_files> | tee sda.txtScript (./script.sh <num_of_autoencoders>)
#! /bin/bash
let END=$1-1
range=$(seq 0 $END)
for i in $range;do
python autoencoder.py -i <config_path>$i.ini -t train/test | tee autoenc_$i.txt
done
python stackedautoencoders.py -i <config_path>.ini -n $1 -t train/test -p <prefix_of_invidual_autoenc_config_files> | tee sda.txt$ python convolutional_ae.py -i <config_path>.ini -t train/test | tee <experiment_name>.txtClustering configurations depend on *.npz files as input (see more on data access), for all experiment configurations we assume that the config file for the running experiment exist (see more on data access).
$ python supervised.py -i <config_path>.ini -t train/test | tee <experiment_name>.txt$ python supervised_vase.py -i <config_path>.ini -t train/test | tee <experiment_name>.txtDeep supervised classification inspired by inception model with multiple channels (Deep MC or Vase MC)
$ python supervised_vase_mult.py -i <config_path>.ini -t train/test | tee <experiment_name>.txtExample of stacked denoising autoencoders using the MNIST dataset.
$ cd ncsr-atmo-learn/examples/sda/
$ ./start.sh 4$ ./plot_error_lines.py <tee experiment file> <label defined in the tee file>