A computer vision project to extract features from a single dense image of Mars from the Mars Reconnaissance Orbiter.
-
Examine image for extractable features
a. Crater count [start here]
i. SkImage example
b. Crater diameters (requires extra data)
c. Ejecta diameters
d. Ridge counts
e. Compare smooth to cratered surface statistics
f. Boulder counts -
Determine package and pre-trained model to use a. Python
i. OpenCV
ii. Scikit-Image
a. https://scikit-image.org/docs/stable/user_guide/
iii. PIL (Python Imaging Library)
iv. Tensorflow
v. Keras
b. R
i. Rvision -
Determine computer vision model to use
a. Gabor filter banks for texture classification
b. Local Binary Pattern for texture classification
c. Multi-Block Local Binary Pattern for texture classification
d. Morphological Filtering
e. Colocalization metrics
f. Registration using optical flow
g. Removing small objects in grayscale images with a top hat filter
h. Using window functions with images
- ESP_072719_1970_RED.browse.jpg is the low-resolution dataset preview image.
- ESP_072719_1970_RED.LBL has the detailed information about the image in the LBL format.
- ESP_072719_1970_RED.XML has the detailed information about the image in the XML format.
Consider combining algorithms. E.g. hole detection with blob detection
