Skip to content

davidmvermillion/MarsComputerVision

Repository files navigation

Mars Project

A computer vision project to extract features from a single dense image of Mars from the Mars Reconnaissance Orbiter.

Thumbnail Image

Project Plan

  1. Examine image for extractable features
    a. Crater count [start here]
    i. SkImage example
    b. Crater diameters (requires extra data)
    c. Ejecta diameters
    d. Ridge counts
    e. Compare smooth to cratered surface statistics
    f. Boulder counts

  2. Determine package and pre-trained model to use a. Python
    i. OpenCV
    ii. Scikit-Image
    a. https://scikit-image.org/docs/stable/user_guide/
    iii. PIL (Python Imaging Library)
    iv. Tensorflow
    v. Keras
    b. R
    i. Rvision

  3. Determine computer vision model to use
    a. Gabor filter banks for texture classification
    b. Local Binary Pattern for texture classification
    c. Multi-Block Local Binary Pattern for texture classification
    d. Morphological Filtering
    e. Colocalization metrics
    f. Registration using optical flow
    g. Removing small objects in grayscale images with a top hat filter
    h. Using window functions with images

Files

  1. ESP_072719_1970_RED.browse.jpg is the low-resolution dataset preview image.
  2. ESP_072719_1970_RED.LBL has the detailed information about the image in the LBL format.
  3. ESP_072719_1970_RED.XML has the detailed information about the image in the XML format.

Data Source

  1. Mars Reconnaissance Orbiter ESP_072719_1970_RED.JP2

Other Notes

Consider combining algorithms. E.g. hole detection with blob detection

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published