Skip to content

davidtvs/Keras-LinkNet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

67 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Keras-LinkNet

Keras implementation of LinkNet: Exploiting Encoder Representations for Efficient Semantic Segmentation, ported from the lua-torch (LinkNet) and PyTorch (pytorch-linknet) implementation, both created by the authors.

Dataset Classes 1 Input resolution Batch size Mean IoU (%)
CamVid 12 960x480 2 47.152
Cityscapes 20 1024x512 2 53.373

1 Includes the unlabeled/void class.
2 Test set.
3 Validation set.

Installation

  1. Python 3 and pip.
  2. Set up a virtual environment (optional, but recommended).
  3. Install dependencies using pip: pip install -r requirements.txt.

Usage

Run main.py, the main script file used for training and/or testing the model. The following options are supported:

python main.py [-h] [--mode {train,test,full}] [--resume]
               [--initial-epoch INITIAL_EPOCH] [--no-pretrained-encoder]
               [--weights-path WEIGHTS_PATH] [--batch-size BATCH_SIZE]
               [--epochs EPOCHS] [--learning-rate LEARNING_RATE]
               [--lr-decay LR_DECAY] [--lr-decay-epochs LR_DECAY_EPOCHS]
               [--dataset {camvid,cityscapes}] [--dataset-dir DATASET_DIR]
               [--workers WORKERS] [--verbose {0,1,2}] [--name NAME]
               [--checkpoint-dir CHECKPOINT_DIR]

For help on the optional arguments run: python main.py -h

Examples: Training

python main.py -m train --checkpoint-dir save/folder/ --name model_name --dataset name --dataset-dir path/root_directory/

Examples: Resuming training

python main.py -m train --resume True --initial-epoch 10 --checkpoint-dir save/folder/ --name model_name --dataset name --dataset-dir path/root_directory/

Examples: Testing

python main.py -m test --checkpoint-dir save/folder/ --name model_name --dataset name --dataset-dir path/root_directory/

Project structure

Folders

  • data: Contains code to load the supported datasets.
  • metrics: Evaluation-related metrics.
  • models: LinkNet model definition.
  • checkpoints: By default, main.py will save models in this folder. The pre-trained encoder (ResNet18) trained on ImageNet can be found here.

Files

  • args.py: Contains all command-line options.
  • main.py: Main script file used for training and/or testing the model.
  • callbacks.py: Custom callbacks are defined here.

About

Keras implementation of LinkNet

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages