Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Bump tokenizers from 0.19.1 to 0.20.1 #213

Merged
merged 1 commit into from
Nov 4, 2024

Conversation

dependabot[bot]
Copy link
Contributor

@dependabot dependabot bot commented on behalf of github Nov 4, 2024

Bumps tokenizers from 0.19.1 to 0.20.1.

Release notes

Sourced from tokenizers's releases.

Release v0.20.1

What's Changed

The most awaited offset issue with Llama is fixed 🥳

New Contributors

Full Changelog: huggingface/tokenizers@v0.20.0...v0.20.1

Release v0.20.0: faster encode, better python support

Release v0.20.0

This release is focused on performances and user experience.

Performances:

First off, we did a bit of benchmarking, and found some place for improvement for us! With a few minor changes (mostly #1587) here is what we get on Llama3 running on a g6 instances on AWS https://github.com/huggingface/tokenizers/blob/main/bindings/python/benches/test_tiktoken.py : image

Python API

We shipped better deserialization errors in general, and support for __str__ and __repr__ for all the object. This allows for a lot easier debugging see this:

>>> from tokenizers import Tokenizer;
>>> tokenizer = Tokenizer.from_pretrained("bert-base-uncased");
>>> print(tokenizer)
Tokenizer(version="1.0", truncation=None, padding=None, added_tokens=[{"id":0, "content":"[PAD]", "single_word":False, "lstrip":False, "rstrip":False, ...}, {"id":100, "content":"[UNK]", "single_word":False, "lstrip":False, "rstrip":False, ...}, {"id":101, "content":"[CLS]", "single_word":False, "lstrip":False, "rstrip":False, ...}, {"id":102, "content":"[SEP]", "single_word":False, "lstrip":False, "rstrip":False, ...}, {"id":103, "content":"[MASK]", "single_word":False, "lstrip":False, "rstrip":False, ...}], normalizer=BertNormalizer(clean_text=True, handle_chinese_chars=True, strip_accents=None, lowercase=True), pre_tokenizer=BertPreTokenizer(), post_processor=TemplateProcessing(single=[SpecialToken(id="[CLS]", type_id=0), Sequence(id=A, type_id=0), SpecialToken(id="[SEP]", type_id=0)], pair=[SpecialToken(id="[CLS]", type_id=0), Sequence(id=A, type_id=0), SpecialToken(id="[SEP]", type_id=0), Sequence(id=B, type_id=1), SpecialToken(id="[SEP]", type_id=1)], special_tokens={"[CLS]":SpecialToken(id="[CLS]", ids=[101], tokens=["[CLS]"]), "[SEP]":SpecialToken(id="[SEP]", ids=[102], tokens=["[SEP]"])}), decoder=WordPiece(prefix="##", cleanup=True), model=WordPiece(unk_token="[UNK]", continuing_subword_prefix="##", max_input_chars_per_word=100, vocab={"[PAD]":0, "[unused0]":1, "[unused1]":2, "[unused2]":3, "[unused3]":4, ...}))
>>> tokenizer
Tokenizer(version="1.0", truncation=None, padding=None, added_tokens=[{"id":0, "content":"[PAD]", "single_word":False, "lstrip":False, "rstrip":False, "normalized":False, "special":True}, {"id":100, "content":"[UNK]", "single_word":False, "lstrip":False, "rstrip":False, "normalized":False, "special":True}, {"id":101, "content":"[CLS]", "single_word":False, "lstrip":False, "rstrip":False, "normalized":False, "special":True}, {"id":102, "content":"[SEP]", "single_word":False, "lstrip":False, "rstrip":False, "normalized":False, "special":True}, {"id":103, "content":"[MASK]", "single_word":False, "lstrip":False, "rstrip":False, "normalized":False, "special":True}], normalizer=BertNormalizer(clean_text=True, handle_chinese_chars=True, strip_accents=None, lowercase=True), pre_tokenizer=BertPreTokenizer(), post_processor=TemplateProcessing(single=[SpecialToken(id="[CLS]", type_id=0), Sequence(id=A, type_id=0), SpecialToken(id="[SEP]", type_id=0)], pair=[SpecialToken(id="[CLS]", type_id=0), Sequence(id=A, type_id=0), SpecialToken(id="[SEP]", type_id=0), Sequence(id=B, type_id=1), SpecialToken(id="[SEP]", type_id=1)], special_tokens={"[CLS]":SpecialToken(id="[CLS]", ids=[101], tokens=["[CLS]"]), "[SEP]":SpecialToken(id="[SEP]", ids=[102], tokens=["[SEP]"])}), decoder=WordPiece(prefix="##", cleanup=True), model=WordPiece(unk_token="[UNK]", continuing_subword_prefix="##", max_input_chars_per_word=100, vocab={"[PAD]":0, "[unused0]":1, "[unused1]":2, ...}))

The pre_tokenizer.Sequence and normalizer.Sequence are also more accessible now:

from tokenizers import normalizers
norm = normalizers.Sequence([normalizers.Strip(), normalizers.BertNormalizer()])
norm[0]
norm[1].lowercase=False

... (truncated)

Commits
  • d98298a 0.20.1
  • de305f2 update to ubuntu-22.04
  • 1053470 use --interpreter ${{ matrix.interpreter || '3.7 3.8 3.9 3.10 3.11 3.12 pypy3...
  • f7c33eb add Cargo
  • eca17be v 0.20.1-rc1
  • 557fde7 style: simplify string formatting for readability (#1632)
  • 3d51a16 Fix documentation build (#1642)
  • 294ab86 Bump webpack in /tokenizers/examples/unstable_wasm/www (#1641)
  • 2b97a5e Bump send and express in /tokenizers/examples/unstable_wasm/www (#1631)
  • 077678d Bump serve-static and express in /tokenizers/examples/unstable_wasm/www (#1630)
  • Additional commits viewable in compare view

Dependabot compatibility score

Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


Dependabot commands and options

You can trigger Dependabot actions by commenting on this PR:

  • @dependabot rebase will rebase this PR
  • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
  • @dependabot merge will merge this PR after your CI passes on it
  • @dependabot squash and merge will squash and merge this PR after your CI passes on it
  • @dependabot cancel merge will cancel a previously requested merge and block automerging
  • @dependabot reopen will reopen this PR if it is closed
  • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
  • @dependabot show <dependency name> ignore conditions will show all of the ignore conditions of the specified dependency
  • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
  • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
  • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)

Bumps [tokenizers](https://github.com/huggingface/tokenizers) from 0.19.1 to 0.20.1.
- [Release notes](https://github.com/huggingface/tokenizers/releases)
- [Changelog](https://github.com/huggingface/tokenizers/blob/main/RELEASE.md)
- [Commits](huggingface/tokenizers@v0.19.1...v0.20.1)

---
updated-dependencies:
- dependency-name: tokenizers
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
@dependabot dependabot bot added the dependencies Pull requests that update a dependency file label Nov 4, 2024
@davidycliao davidycliao merged commit 004b033 into main Nov 4, 2024
16 of 19 checks passed
@dependabot dependabot bot deleted the dependabot/pip/tokenizers-0.20.1 branch November 4, 2024 13:23
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
dependencies Pull requests that update a dependency file
Projects
None yet
Development

Successfully merging this pull request may close these issues.

1 participant