Skip to content

Keras implementation of Ring Loss : Convex Feature Normalization for Face Recognition. Based on https://arxiv.org/abs/1803.00130 | Bonus : Smooth-L1/Huber, Cauchy, Geman-McClure Losses

Notifications You must be signed in to change notification settings

daydreamer2023/Ring-Loss-Keras

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

45 Commits
 
 
 
 

Repository files navigation

Ring-Loss-Keras

Keras implementation of Ring Loss : Convex Feature Normalization for Face Recognition. Based on https://arxiv.org/abs/1803.00130

What?

This paper highlights the importance of feature normalization in feature space for better clustering, unlike earlier methods (e.g - L2 Constrained Softmax). The authors have designed a novel loss called Ring Loss to optimize over this norm constraint.

Why?

The direct approach to feature normalization through the hard normalization operation results in a non-convex formulation. Instead, Ring loss applies soft normalization, where it gradually learns to constrain the norm to the scaled unit circle while preserving convexity leading to more robust features.

Getting Started

Install Tensorflow and Keras. Download ringloss-keras.py to your working directory and import everything.

Usage

Initialize a Ring Loss layer and call the layer with your input feature

lambda_ring = 0.1 #Loss Weight Range : 0.1-0.5 to ensure that ring loss doesn't dominate the optimization process. Since this is a relaxed normalization constraint, keep it chill...

ring_loss = Ring_Loss(radius = 1.0, loss_type = 'huber', trainable = False, name = 'ring_loss')(feature)
#--> loss_types - 'cauchy', 'geman', 'huber', 'squared' - 'huber' is default
#--> shape of feature - (batch_size, feature_dims)

Finally, compile your model with joint loss - Softmax and Ringloss

#init number of classes
num_classes = 10

#init final fully connected layer after the feature layer
x_final = Dense(num_classes, name = 'final_layer', kernel_initializer = 'he_normal')(feature) 
output = Activation('softmax', name = 'softmax_out')(x_final)
    
#compile model with joint loss - (softmax loss + lambda_ring * ring loss)
model = Model(inputs=inputs, outputs=[output, ring_loss])
model.compile(loss = {'softmax_out' : 'categorical_crossentropy', 'ring_loss': identity_loss}, optimizer = opt,  metrics = ['accuracy'], loss_weights=[1,lambda_ring])     

Training

Pass a random output for ring loss during the batch data generation to satisfy the outputs.

random_y_train = np.random.rand(batch_size,1)
x_label, y_label =  [data], [y_trues, random_y_train]

References

https://arxiv.org/abs/1803.00130 . http://webdiis.unizar.es/~jcivera/papers/concha_civera_ecmr15.pdf

Contact

To ask questions or report issues, please open an issue on the issues tracker.

About

Keras implementation of Ring Loss : Convex Feature Normalization for Face Recognition. Based on https://arxiv.org/abs/1803.00130 | Bonus : Smooth-L1/Huber, Cauchy, Geman-McClure Losses

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages