forked from pytorch/ao
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Fused HQQ Quantization Gemm (pytorch#153)
* add test / benchmark * add kernels * update readme * more readme edits * edit readme * add transpose test * transpose test pass * refactor test * add checks for CI * add more comments for transpose kernel * remove import in test * clean up benchmark * fix test import order * minor README edits * additional readme edits * update readme * update readme * add note about cudamode --------- Co-authored-by: Mark Saroufim <marksaroufim@meta.com>
- Loading branch information
Showing
7 changed files
with
1,013 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,147 @@ | ||
|
||
try: | ||
import triton | ||
import hqq | ||
if int(triton.__version__.split(".")[0]) < 3: | ||
raise "triton >= 3.0.0 is required to run this test" | ||
except ImportError: | ||
raise "triton and hqq required to run this benchmark" | ||
|
||
import torch | ||
from io import StringIO | ||
|
||
import pandas as pd | ||
from hqq.core.quantize import HQQLinear, BaseQuantizeConfig | ||
from torchao.prototype.hqq.hqq_tinygemm_linear import HQQLinearTorchWeightOnlyInt4 | ||
from torchao.prototype.hqq import triton_mixed_mm, pack_2xint4 | ||
|
||
from triton.testing import do_bench | ||
|
||
|
||
BASE_QUANT_CONFIG = { | ||
"optimize": True, | ||
"view_as_float": False, | ||
"nbits": 4, | ||
"bitpack": False, | ||
"axis": 1, | ||
} | ||
|
||
|
||
def bench_custom_kernel(x, W_q, scales, zeros, group_size, kernel_type="max_autotune", fp8_fast_accum=False): | ||
packed_w = pack_2xint4(W_q.T) | ||
|
||
def fn(): | ||
_ = triton_mixed_mm( | ||
x, | ||
packed_w, | ||
scales.T, | ||
zeros.T, | ||
group_size=group_size, | ||
fp8_fast_accum=fp8_fast_accum, | ||
kernel_type=kernel_type, | ||
) | ||
|
||
t = do_bench(fn) | ||
return t | ||
|
||
|
||
def bench_hqq(x, hqq_linear: HQQLinear): | ||
def fn(): | ||
_ = hqq_linear.forward(x) | ||
|
||
t = do_bench(fn) | ||
return t | ||
|
||
|
||
def run_benchmark(shape, group_size, dtype, axis=1, quant_dtype=torch.uint8): | ||
qcfg = { | ||
**BASE_QUANT_CONFIG, | ||
**dict(group_size=group_size, axis=axis), | ||
} | ||
M, N, K = shape | ||
|
||
x = torch.randn(M, K, dtype=dtype, device="cuda") | ||
linear = torch.nn.Linear(K, N, bias=False, dtype=dtype, device="cuda") | ||
|
||
quant_config = BaseQuantizeConfig( | ||
quant_zero=False, quant_scale=False, offload_meta=False, view_as_float=False | ||
) | ||
quant_config.update({"weight_quant_params": qcfg}) | ||
|
||
hqq_linear = HQQLinear(linear, quant_config, compute_dtype=dtype, del_orig=False) | ||
|
||
# Reference | ||
ref_time = bench_hqq(x, hqq_linear) | ||
|
||
# Custom kernel | ||
W_q, meta = hqq_linear.W_q, hqq_linear.meta | ||
scales, zeros = meta["scale"], meta["zero"] | ||
|
||
W_q = ( | ||
W_q.reshape(meta["shape"]) | ||
if quant_config["weight_quant_params"]["bitpack"] == False | ||
else W_q | ||
) | ||
W_q = W_q.to(dtype=quant_dtype) | ||
scales = scales.reshape(N, -1) | ||
zeros = zeros.reshape(N, -1) | ||
tt_time = bench_custom_kernel(x, W_q, scales, zeros, group_size) | ||
|
||
if dtype == torch.bfloat16: | ||
_ = quant_config["weight_quant_params"].pop("bitpack") | ||
hqq_int4mm = HQQLinearTorchWeightOnlyInt4( | ||
linear, quant_config, compute_dtype=dtype, del_orig=False | ||
) | ||
int4_time = bench_hqq(x, hqq_int4mm) | ||
|
||
print(f"{shape=} {group_size=} {dtype=}:") | ||
|
||
print( | ||
f"Ref: {ref_time:.4f}", | ||
f"Triton: {tt_time:.4f}", | ||
f"Torch int4mm: {int4_time:.4f}" | ||
if dtype == torch.bfloat16 | ||
else "", | ||
) | ||
print() | ||
return ref_time, tt_time, int4_time if dtype == torch.bfloat16 else None | ||
|
||
|
||
SHAPES = [ | ||
[16, 4096, 4096], | ||
[32, 4096, 4096], | ||
[128, 4096, 4096], | ||
[256, 4096, 4096], | ||
[512, 4096, 4096], | ||
[1024, 4096, 4096], | ||
] | ||
|
||
DTYPES = [torch.bfloat16] # , torch.float16] | ||
GROUP_SIZES = [128] | ||
|
||
|
||
HEADERS = [ | ||
"M", | ||
"N", | ||
"K", | ||
"group_size", | ||
"dtype", | ||
"ref", | ||
"triton", | ||
"tinygemm", | ||
] | ||
data = [] | ||
|
||
if __name__ == "__main__": | ||
print(torch.cuda.get_device_properties(0)) | ||
|
||
for shape in SHAPES: | ||
for group_size in GROUP_SIZES: | ||
for dtype in DTYPES: | ||
timings = run_benchmark(shape, group_size, dtype) | ||
data.append((*shape, group_size, dtype, *timings)) | ||
|
||
output = StringIO() | ||
df = pd.DataFrame(data, columns=HEADERS) | ||
df.to_csv(output, index=False) | ||
print(output.getvalue()) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,104 @@ | ||
# Skip entire test if triton is not available, otherwise CI failure | ||
import pytest | ||
try: | ||
import triton | ||
import hqq | ||
if int(triton.__version__.split(".")[0]) < 3: | ||
pytest.skip("triton >= 3.0.0 is required to run this test", allow_module_level=True) | ||
except ImportError: | ||
pytest.skip("triton and hqq required to run this test", allow_module_level=True) | ||
|
||
import itertools | ||
import torch | ||
|
||
from hqq.core.quantize import HQQLinear, BaseQuantizeConfig | ||
from torchao.prototype.hqq import triton_mixed_mm, pack_2xint4 | ||
|
||
|
||
#Test configs | ||
SHAPES = [ | ||
[16, 128, 128], | ||
[16, 4096, 4096], | ||
] | ||
|
||
DTYPES = [torch.bfloat16, torch.float16] | ||
GROUP_SIZES = [64, 128] | ||
AXES = [1] #Only axis = 1 supported | ||
TRANSPOSED = [True] | ||
TRITON_KERNEL_TYPE = ["compute_bound"] #["max_autotune", "compute_bound"] | ||
|
||
TEST_CONFIGS = list(itertools.product(SHAPES, GROUP_SIZES, AXES, DTYPES, TRANSPOSED, TRITON_KERNEL_TYPE)) | ||
|
||
BASE_QUANT_CONFIG = { | ||
"optimize": True, | ||
"view_as_float": False, | ||
"nbits": 4, | ||
"bitpack": False, | ||
"axis": 1, | ||
} | ||
|
||
|
||
def check(expected, actual, msg="", max_diff=1e-3, verbose=False): | ||
passed = torch.allclose(expected, actual, atol=max_diff, rtol=max_diff) | ||
if verbose: | ||
max_err = (expected - actual).abs().max() | ||
if not passed: | ||
print(f"{msg}: Failed! Max error: {max_err}") | ||
else: | ||
print(f"{msg}: Passed! Max error: {max_err}") | ||
|
||
return passed | ||
|
||
def _arg_to_id(arg): | ||
if isinstance(arg, list): | ||
return "x".join([str(x) for x in arg]) | ||
return str(arg) | ||
|
||
@pytest.mark.parametrize("shape, group_size, axis, dtype, transposed, kernel_type", TEST_CONFIGS, ids=_arg_to_id) | ||
def test_mixed_mm(shape, group_size, axis, dtype, transposed, kernel_type, quant_dtype=torch.uint8): | ||
qcfg = { | ||
**BASE_QUANT_CONFIG, | ||
**dict(group_size=group_size, axis=axis), | ||
} | ||
M, N, K = shape | ||
|
||
linear = torch.nn.Linear(K, N, bias=False, dtype=dtype, device="cuda") | ||
|
||
quant_config = BaseQuantizeConfig( | ||
quant_zero=False, quant_scale=False, offload_meta=False, view_as_float=False | ||
) | ||
quant_config.update({"weight_quant_params": qcfg}) | ||
hqq_linear = HQQLinear(linear, quant_config, compute_dtype=dtype, del_orig=False) | ||
W_q, meta = hqq_linear.W_q, hqq_linear.meta | ||
W_q = W_q.to(dtype=quant_dtype) | ||
W_q = ( | ||
W_q.reshape(meta["shape"]) | ||
if quant_config["weight_quant_params"]["bitpack"] == False | ||
else W_q | ||
) | ||
W_dq = hqq_linear.dequantize() | ||
|
||
scales, zeros = meta["scale"], meta["zero"] | ||
scales = scales.reshape(N, -1) | ||
zeros = zeros.reshape(N, -1) | ||
|
||
if transposed: | ||
x = torch.randn(M, N, dtype=dtype, device="cuda") | ||
hqq_out = x @ W_dq | ||
|
||
#Pack uint8 W_q, then run fused dequant matmul | ||
packed_w = pack_2xint4(W_q) | ||
tt_out = triton_mixed_mm( | ||
x, packed_w, scales, zeros, transposed=True, group_size=group_size, fp8_fast_accum=False, kernel_type=kernel_type | ||
) | ||
else: | ||
x = torch.randn(M, K, dtype=dtype, device="cuda") | ||
hqq_out = x @ W_dq.T | ||
|
||
packed_w = pack_2xint4(W_q.T) | ||
tt_out = triton_mixed_mm( | ||
x, packed_w, scales.T, zeros.T, transposed=False, group_size=group_size, fp8_fast_accum=False, kernel_type=kernel_type | ||
) | ||
|
||
assert check(hqq_out, tt_out, max_diff=1e-2 if dtype == torch.bfloat16 else 1e-3) | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,55 @@ | ||
## Fused `int4 / fp16` Quant Matmul | ||
|
||
Fused kernel that combines asymmetric dequantization and gemm. Useful primarily for compute-bound (M > 16) scenarios and not for memory-bound / inference scenarios. | ||
|
||
The kernel fuses two ops: | ||
|
||
- Dequantization: upcasts `u4 / s4` weights to `float16 / bfloat16`, followed by groupwise scaling and shifting by scales / zeropoints | ||
- GEMM: matmul on dequantized weights and activations. | ||
|
||
Tested and benchmarked for `HQQ` but could theoretically be used for any asymmetric quantization scheme. | ||
|
||
> **NOTE**: Benchmark below is only indicative of performance on consumer-grade `Ampere` GPUs (`A6000` specifically). When tested on `H100`, the performance is on par / marginally worse than native / compiled `torch`. | ||
> The intended use is thus for fine-tuning / training models on non-datacenter GPUs (`80 <= compute capability < 90`). If interested in optimizing the kernel for other architectures, please drop a note in the CUDA-MODE Discord channel. | ||
### Implementation Details | ||
|
||
- Bitpacking is simple row interleave, no need for extensive preprocessing (e.g., `tinygemm` or `fastertransformer`) | ||
- Tested for `float16 / bfloat16` activations, scales, and zeros | ||
- Autotuned for both compute-bound and memory-bound configs | ||
- Assumes operand B of the `gemm` is is the quantized type. | ||
- Requires quantization along `in-features`, i.e., the `K` dimension, or `axis=1`, of `torch.linear.weight`. | ||
- Implementation handles both transposed and non-tranposed quantized weights, useful for forward / backward training passes. | ||
|
||
### Performance | ||
|
||
Initial benchmarking (on `A6000`) demonstrates promising results, scaling well for compute-bound workloads: | ||
|
||
| | M | N | K | group_size | dtype | hqq_ref | triton | tinygemm | | ||
| --- | ---- | ---- | ---- | ---------- | -------------- | ------- | ------ | -------- | | ||
| 0 | 16 | 4096 | 4096 | 128 | torch.bfloat16 | 0.2675 | 0.0633 | 0.0382 | | ||
| 1 | 32 | 4096 | 4096 | 128 | torch.bfloat16 | 0.2669 | 0.0704 | 0.0649 | | ||
| 2 | 128 | 4096 | 4096 | 128 | torch.bfloat16 | 0.2689 | 0.0960 | 0.2523 | | ||
| 3 | 256 | 4096 | 4096 | 128 | torch.bfloat16 | 0.3268 | 0.1355 | 0.5192 | | ||
| 4 | 512 | 4096 | 4096 | 128 | torch.bfloat16 | 0.3628 | 0.2369 | 1.0892 | | ||
| 5 | 1024 | 4096 | 4096 | 128 | torch.bfloat16 | 0.5133 | 0.4753 | 2.2016 | | ||
|
||
- Times are in `ms`, see `benchmarks/benchmark_hqq.py`. | ||
- `hqq_ref` is the base `HQQ_Linear` [module](https://github.com/mobiusml/hqq/blob/6d50eee4bcdd99cc10716f1297c5b2803d2b6da4/hqq/core/quantize.py#L349) that is unfused (dequantization followed by call to torch.matmul). | ||
- `tinygemm` calls `torch.ops.aten._weight_int4pack_mm`. Implementation is a custom HQQLinear layer that wraps the preprocessing necessary for this kernel, adapted from a benchmark script posted by @mobicham from `CUDA-mode` Discord discussions. | ||
|
||
GPU details: | ||
|
||
``` | ||
_CudaDeviceProperties(name='NVIDIA RTX A6000', major=8, minor=6, total_memory=48676MB, multi_processor_count=84) | ||
``` | ||
|
||
### NOTE | ||
|
||
This implementation requires **`triton >= 3.0.0`**. | ||
|
||
- Running tests / benchmarks requires installation of `hqq`: | ||
|
||
``` | ||
pip install hqq | ||
``` |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
from .mixed_mm import triton_mixed_mm, pack_2xint4 |
Oops, something went wrong.