Skip to content

Commit

Permalink
Feat: add se_r descriptor (#3338)
Browse files Browse the repository at this point in the history
This PR is to support `se_r` descriptor in pytorch and numpy.
- [x] Refactor Pytorch env_mat: possibly combine `r` and `a`.
- [x] Add numpy implementation.
- [x] Add consistency test with `tf`.
- [x] Refactor device as parameter

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
  • Loading branch information
anyangml and pre-commit-ci[bot] authored Feb 27, 2024
1 parent 254afc8 commit c538d04
Show file tree
Hide file tree
Showing 17 changed files with 1,175 additions and 75 deletions.
4 changes: 4 additions & 0 deletions deepmd/dpmodel/descriptor/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,8 +5,12 @@
from .se_e2_a import (
DescrptSeA,
)
from .se_r import (
DescrptSeR,
)

__all__ = [
"DescrptSeA",
"DescrptSeR",
"make_base_descriptor",
]
17 changes: 13 additions & 4 deletions deepmd/dpmodel/descriptor/se_e2_a.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,9 @@

import numpy as np

from deepmd.env import (
GLOBAL_NP_FLOAT_PRECISION,
)
from deepmd.utils.path import (
DPPath,
)
Expand Down Expand Up @@ -183,8 +186,12 @@ def __init__(
)
self.env_mat = EnvMat(self.rcut, self.rcut_smth)
self.nnei = np.sum(self.sel)
self.davg = np.zeros([self.ntypes, self.nnei, 4])
self.dstd = np.ones([self.ntypes, self.nnei, 4])
self.davg = np.zeros(
[self.ntypes, self.nnei, 4], dtype=PRECISION_DICT[self.precision]
)
self.dstd = np.ones(
[self.ntypes, self.nnei, 4], dtype=PRECISION_DICT[self.precision]
)
self.orig_sel = self.sel

def __setitem__(self, key, value):
Expand Down Expand Up @@ -292,7 +299,7 @@ def call(
sec = np.append([0], np.cumsum(self.sel))

ng = self.neuron[-1]
gr = np.zeros([nf * nloc, ng, 4])
gr = np.zeros([nf * nloc, ng, 4], dtype=PRECISION_DICT[self.precision])
exclude_mask = self.emask.build_type_exclude_mask(nlist, atype_ext)
# merge nf and nloc axis, so for type_one_side == False,
# we don't require atype is the same in all frames
Expand Down Expand Up @@ -322,7 +329,9 @@ def call(
# nf x nloc x ng x ng1
grrg = np.einsum("flid,fljd->flij", gr, gr1)
# nf x nloc x (ng x ng1)
grrg = grrg.reshape(nf, nloc, ng * self.axis_neuron)
grrg = grrg.reshape(nf, nloc, ng * self.axis_neuron).astype(
GLOBAL_NP_FLOAT_PRECISION
)
return grrg, gr[..., 1:], None, None, ww

def serialize(self) -> dict:
Expand Down
321 changes: 321 additions & 0 deletions deepmd/dpmodel/descriptor/se_r.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,321 @@
# SPDX-License-Identifier: LGPL-3.0-or-later
import numpy as np

from deepmd.utils.path import (
DPPath,
)

try:
from deepmd._version import version as __version__
except ImportError:
__version__ = "unknown"

import copy
from typing import (
Any,
List,
Optional,
)

from deepmd.dpmodel import (
DEFAULT_PRECISION,
PRECISION_DICT,
NativeOP,
)
from deepmd.dpmodel.utils import (
EmbeddingNet,
EnvMat,
NetworkCollection,
PairExcludeMask,
)
from deepmd.env import (
GLOBAL_NP_FLOAT_PRECISION,
)

from .base_descriptor import (
BaseDescriptor,
)


@BaseDescriptor.register("se_e2_r")
@BaseDescriptor.register("se_r")
class DescrptSeR(NativeOP, BaseDescriptor):
r"""DeepPot-SE_R constructed from only the radial imformation of atomic configurations.
Parameters
----------
rcut
The cut-off radius :math:`r_c`
rcut_smth
From where the environment matrix should be smoothed :math:`r_s`
sel : list[str]
sel[i] specifies the maxmum number of type i atoms in the cut-off radius
neuron : list[int]
Number of neurons in each hidden layers of the embedding net :math:`\mathcal{N}`
resnet_dt
Time-step `dt` in the resnet construction:
y = x + dt * \phi (Wx + b)
trainable
If the weights of embedding net are trainable.
type_one_side
Try to build N_types embedding nets. Otherwise, building N_types^2 embedding nets
exclude_types : List[List[int]]
The excluded pairs of types which have no interaction with each other.
For example, `[[0, 1]]` means no interaction between type 0 and type 1.
set_davg_zero
Set the shift of embedding net input to zero.
activation_function
The activation function in the embedding net. Supported options are |ACTIVATION_FN|
precision
The precision of the embedding net parameters. Supported options are |PRECISION|
multi_task
If the model has multi fitting nets to train.
spin
The deepspin object.
Limitations
-----------
The currently implementation does not support the following features
1. type_one_side == False
2. exclude_types != []
3. spin is not None
References
----------
.. [1] Linfeng Zhang, Jiequn Han, Han Wang, Wissam A. Saidi, Roberto Car, and E. Weinan. 2018.
End-to-end symmetry preserving inter-atomic potential energy model for finite and extended
systems. In Proceedings of the 32nd International Conference on Neural Information Processing
Systems (NIPS'18). Curran Associates Inc., Red Hook, NY, USA, 4441-4451.
"""

def __init__(
self,
rcut: float,
rcut_smth: float,
sel: List[str],
neuron: List[int] = [24, 48, 96],
resnet_dt: bool = False,
trainable: bool = True,
type_one_side: bool = True,
exclude_types: List[List[int]] = [],
set_davg_zero: bool = False,
activation_function: str = "tanh",
precision: str = DEFAULT_PRECISION,
spin: Optional[Any] = None,
# consistent with argcheck, not used though
seed: Optional[int] = None,
) -> None:
## seed, uniform_seed, multi_task, not included.
if not type_one_side:
raise NotImplementedError("type_one_side == False not implemented")
if spin is not None:
raise NotImplementedError("spin is not implemented")

self.rcut = rcut
self.rcut_smth = rcut_smth
self.sel = sel
self.ntypes = len(self.sel)
self.neuron = neuron
self.resnet_dt = resnet_dt
self.trainable = trainable
self.type_one_side = type_one_side
self.exclude_types = exclude_types
self.set_davg_zero = set_davg_zero
self.activation_function = activation_function
self.precision = precision
self.spin = spin
self.emask = PairExcludeMask(self.ntypes, self.exclude_types)

in_dim = 1 # not considiering type embedding
self.embeddings = NetworkCollection(
ntypes=self.ntypes,
ndim=(1 if self.type_one_side else 2),
network_type="embedding_network",
)
if not self.type_one_side:
raise NotImplementedError("type_one_side == False not implemented")
for ii in range(self.ntypes):
self.embeddings[(ii,)] = EmbeddingNet(
in_dim,
self.neuron,
self.activation_function,
self.resnet_dt,
self.precision,
)
self.env_mat = EnvMat(self.rcut, self.rcut_smth)
self.nnei = np.sum(self.sel)
self.davg = np.zeros(
[self.ntypes, self.nnei, 1], dtype=PRECISION_DICT[self.precision]
)
self.dstd = np.ones(
[self.ntypes, self.nnei, 1], dtype=PRECISION_DICT[self.precision]
)
self.orig_sel = self.sel

def __setitem__(self, key, value):
if key in ("avg", "data_avg", "davg"):
self.davg = value
elif key in ("std", "data_std", "dstd"):
self.dstd = value
else:
raise KeyError(key)

def __getitem__(self, key):
if key in ("avg", "data_avg", "davg"):
return self.davg
elif key in ("std", "data_std", "dstd"):
return self.dstd
else:
raise KeyError(key)

@property
def dim_out(self):
"""Returns the output dimension of this descriptor."""
return self.get_dim_out()

def get_dim_out(self):
"""Returns the output dimension of this descriptor."""
return self.neuron[-1]

def get_dim_emb(self):
"""Returns the embedding (g2) dimension of this descriptor."""
raise NotImplementedError

def get_rcut(self):
"""Returns cutoff radius."""
return self.rcut

def get_sel(self):
"""Returns cutoff radius."""
return self.sel

def mixed_types(self):
"""Returns if the descriptor requires a neighbor list that distinguish different
atomic types or not.
"""
return False

def get_ntypes(self) -> int:
"""Returns the number of element types."""
return self.ntypes

def compute_input_stats(self, merged: List[dict], path: Optional[DPPath] = None):
"""Update mean and stddev for descriptor elements."""
raise NotImplementedError

def cal_g(
self,
ss,
ll,
):
nf, nloc, nnei = ss.shape[0:3]
ss = ss.reshape(nf, nloc, nnei, 1)
# nf x nloc x nnei x ng
gg = self.embeddings[(ll,)].call(ss)
return gg

def call(
self,
coord_ext,
atype_ext,
nlist,
mapping: Optional[np.ndarray] = None,
):
"""Compute the descriptor.
Parameters
----------
coord_ext
The extended coordinates of atoms. shape: nf x (nallx3)
atype_ext
The extended aotm types. shape: nf x nall
nlist
The neighbor list. shape: nf x nloc x nnei
mapping
The index mapping from extended to lcoal region. not used by this descriptor.
Returns
-------
descriptor
The descriptor. shape: nf x nloc x (ng x axis_neuron)
gr
The rotationally equivariant and permutationally invariant single particle
representation. shape: nf x nloc x ng x 3
g2
The rotationally invariant pair-partical representation.
this descriptor returns None
h2
The rotationally equivariant pair-partical representation.
this descriptor returns None
sw
The smooth switch function.
"""
del mapping
# nf x nloc x nnei x 1
rr, ww = self.env_mat.call(
coord_ext, atype_ext, nlist, self.davg, self.dstd, True
)
nf, nloc, nnei, _ = rr.shape
sec = np.append([0], np.cumsum(self.sel))

ng = self.neuron[-1]
xyz_scatter = np.zeros([nf, nloc, ng], dtype=PRECISION_DICT[self.precision])
exclude_mask = self.emask.build_type_exclude_mask(nlist, atype_ext)
for tt in range(self.ntypes):
mm = exclude_mask[:, :, sec[tt] : sec[tt + 1]]
tr = rr[:, :, sec[tt] : sec[tt + 1], :]
tr = tr * mm[:, :, :, None]
gg = self.cal_g(tr, tt)
gg = np.mean(gg, axis=2)
# nf x nloc x ng x 1
xyz_scatter += gg

res_rescale = 1.0 / 10.0
res = xyz_scatter * res_rescale
res = res.reshape(nf, nloc, -1).astype(GLOBAL_NP_FLOAT_PRECISION)
return res, None, None, None, ww

def serialize(self) -> dict:
"""Serialize the descriptor to dict."""
return {
"@class": "Descriptor",
"type": "se_r",
"rcut": self.rcut,
"rcut_smth": self.rcut_smth,
"sel": self.sel,
"neuron": self.neuron,
"resnet_dt": self.resnet_dt,
"trainable": self.trainable,
"type_one_side": self.type_one_side,
"exclude_types": self.exclude_types,
"set_davg_zero": self.set_davg_zero,
"activation_function": self.activation_function,
# make deterministic
"precision": np.dtype(PRECISION_DICT[self.precision]).name,
"spin": self.spin,
"env_mat": self.env_mat.serialize(),
"embeddings": self.embeddings.serialize(),
"@variables": {
"davg": self.davg,
"dstd": self.dstd,
},
}

@classmethod
def deserialize(cls, data: dict) -> "DescrptSeR":
"""Deserialize from dict."""
data = copy.deepcopy(data)
data.pop("@class", None)
data.pop("type", None)
variables = data.pop("@variables")
embeddings = data.pop("embeddings")
env_mat = data.pop("env_mat")
obj = cls(**data)

obj["davg"] = variables["davg"]
obj["dstd"] = variables["dstd"]
obj.embeddings = NetworkCollection.deserialize(embeddings)
obj.env_mat = EnvMat.deserialize(env_mat)
return obj
Loading

0 comments on commit c538d04

Please sign in to comment.