Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

test(pt): add common test case for model/atomic model #3767

Merged
merged 7 commits into from
May 23, 2024
Merged
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
66 changes: 66 additions & 0 deletions source/tests/pt/model/test_ener_model.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,66 @@
# SPDX-License-Identifier: LGPL-3.0-or-later
import unittest

from deepmd.pt.model.atomic_model.energy_atomic_model import (
DPEnergyAtomicModel,
)
from deepmd.pt.model.descriptor.se_a import (
DescrptSeA,
)
from deepmd.pt.model.model.ener_model import (
EnergyModel,
)
from deepmd.pt.model.task.ener import (
EnergyFittingNet,
)

from .utils import (
AtomicModelTestCase,
ModelTestCase,
)


class TestEnerModel(unittest.TestCase, ModelTestCase):
def setUp(self) -> None:
self.expected_rcut = 5.0
self.expected_type_map = ["foo", "bar"]
self.expected_dim_fparam = 0
self.expected_dim_aparam = 0
self.expected_sel_type = [0, 1]
self.expected_aparam_nall = False
self.expected_model_output_type = ["energy", "mask"]
self.expected_sel = [8, 12]
ds = DescrptSeA(
rcut=self.expected_rcut,
rcut_smth=self.expected_rcut / 2,
sel=self.expected_sel,
)
ft = EnergyFittingNet(
ntypes=len(self.expected_type_map),
dim_descrpt=ds.get_dim_out(),
mixed_types=ds.mixed_types(),
)
self.module = EnergyModel(ds, ft, type_map=self.expected_type_map)


class TestEnerAtomicModel(unittest.TestCase, AtomicModelTestCase):
def setUp(self) -> None:
self.expected_rcut = 5.0
self.expected_type_map = ["foo", "bar"]
self.expected_dim_fparam = 0
self.expected_dim_aparam = 0
self.expected_sel_type = [0, 1]
self.expected_aparam_nall = False
self.expected_model_output_type = ["energy", "mask"]
self.expected_sel = [8, 12]
ds = DescrptSeA(
rcut=self.expected_rcut,
rcut_smth=self.expected_rcut / 2,
sel=self.expected_sel,
)
ft = EnergyFittingNet(
ntypes=len(self.expected_type_map),
dim_descrpt=ds.get_dim_out(),
mixed_types=ds.mixed_types(),
)
self.module = DPEnergyAtomicModel(ds, ft, type_map=self.expected_type_map)
241 changes: 241 additions & 0 deletions source/tests/pt/model/utils.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,241 @@
# SPDX-License-Identifier: LGPL-3.0-or-later
"""Common test case."""

from typing import (
List,
)

import numpy as np
import torch

from deepmd.pt.utils.nlist import (
extend_input_and_build_neighbor_list,
)
from deepmd.pt.utils.utils import (
to_torch_tensor,
)


class CommonTestCase:
"""Common test case."""

module: torch.nn.Module
"""Module to test."""

@property
def script_module(self):
return torch.jit.script(self.module)

@property
def deserialized_module(self):
return self.module.deserialize(self.module.serialize())

@property
def modules_to_test(self):
return [self.module, self.script_module, self.deserialized_module]

def test_jit(self):
self.script_module


class ModelTestCase(CommonTestCase):
"""Common test case for model."""

expected_type_map: List[str]
"""Expected type map."""
expected_rcut: float
"""Expected cut-off radius."""
expected_dim_fparam: int
"""Expected number (dimension) of frame parameters."""
expected_dim_aparam: int
"""Expected number (dimension) of atomic parameters."""
expected_sel_type: List[int]
"""Expected selected atom types."""
expected_aparam_nall: bool
"""Expected shape of atomic parameters."""
expected_model_output_type: List[str]
"""Expected output type for the model."""
expected_sel: List[int]
"""Expected number of neighbors."""

def test_get_type_map(self):
"""Test get_type_map."""
for module in self.modules_to_test:
self.assertEqual(module.get_type_map(), self.expected_type_map)

def test_get_rcut(self):
"""Test get_rcut."""
for module in self.modules_to_test:
self.assertAlmostEqual(module.get_rcut(), self.expected_rcut)

def test_get_dim_fparam(self):
"""Test get_dim_fparam."""
for module in self.modules_to_test:
self.assertEqual(module.get_dim_fparam(), self.expected_dim_fparam)

def test_get_dim_aparam(self):
"""Test get_dim_aparam."""
for module in self.modules_to_test:
self.assertEqual(module.get_dim_aparam(), self.expected_dim_aparam)

def test_get_sel_type(self):
"""Test get_sel_type."""
for module in self.modules_to_test:
self.assertEqual(module.get_sel_type(), self.expected_sel_type)

def test_is_aparam_nall(self):
"""Test is_aparam_nall."""
for module in self.modules_to_test:
self.assertEqual(module.is_aparam_nall(), self.expected_aparam_nall)

def test_model_output_type(self):
"""Test model_output_type."""
for module in self.modules_to_test:
self.assertEqual(
module.model_output_type(), self.expected_model_output_type
)

def test_get_nnei(self):
"""Test get_nnei."""
expected_nnei = sum(self.expected_sel)
for module in self.modules_to_test:
self.assertEqual(module.get_nnei(), expected_nnei)

def test_get_ntypes(self):
"""Test get_ntypes."""
for module in self.modules_to_test:
self.assertEqual(module.get_ntypes(), len(self.expected_type_map))

def test_forward(self):
"""Test forward and forward_lower."""
nf = 1
nloc = 3
Fixed Show fixed Hide fixed
coord = to_torch_tensor(
np.array(
[
[0, 0, 0],
[0, 1, 0],
[0, 0, 1],
],
dtype=np.float64,
).reshape([nf, -1])
)
atype = to_torch_tensor(np.array([0, 0, 1], dtype=int).reshape([nf, -1]))
cell = to_torch_tensor(6.0 * np.eye(3).reshape([nf, 9]))
coord_ext, atype_ext, mapping, nlist = extend_input_and_build_neighbor_list(
coord,
atype,
self.expected_rcut,
self.expected_sel,
mixed_types=True,
box=cell,
)
ret = []
ret_lower = []
for module in self.modules_to_test:
ret.append(module(coord, atype, cell))
ret_lower.append(module.forward_lower(coord_ext, atype_ext, nlist))
for r in ret[1:]:
torch.testing.assert_close(ret[0], r)
for r in ret_lower[1:]:
torch.testing.assert_close(ret_lower[0], r)
same_keys = set(ret[0].keys()) & set(ret_lower[0].keys())
self.assertTrue(same_keys)
for key in same_keys:
torch.testing.assert_close(ret[0][key], ret_lower[0][key])


class AtomicModelTestCase(CommonTestCase):
"""Common test case for atomic model."""

expected_type_map: List[str]
"""Expected type map."""
expected_rcut: float
"""Expected cut-off radius."""
expected_dim_fparam: int
"""Expected number (dimension) of frame parameters."""
expected_dim_aparam: int
"""Expected number (dimension) of atomic parameters."""
expected_sel_type: List[int]
"""Expected selected atom types."""
expected_aparam_nall: bool
"""Expected shape of atomic parameters."""
expected_model_output_type: List[str]
"""Expected output type for the model."""
expected_sel: List[int]
"""Expected number of neighbors."""

@property
def modules_to_test(self):
return [self.module, self.deserialized_module]

def test_get_type_map(self):
"""Test get_type_map."""
for module in self.modules_to_test:
self.assertEqual(module.get_type_map(), self.expected_type_map)

def test_get_rcut(self):
"""Test get_rcut."""
for module in self.modules_to_test:
self.assertAlmostEqual(module.get_rcut(), self.expected_rcut)

def test_get_dim_fparam(self):
"""Test get_dim_fparam."""
for module in self.modules_to_test:
self.assertEqual(module.get_dim_fparam(), self.expected_dim_fparam)

def test_get_dim_aparam(self):
"""Test get_dim_aparam."""
for module in self.modules_to_test:
self.assertEqual(module.get_dim_aparam(), self.expected_dim_aparam)

def test_get_sel_type(self):
"""Test get_sel_type."""
for module in self.modules_to_test:
self.assertEqual(module.get_sel_type(), self.expected_sel_type)

def test_is_aparam_nall(self):
"""Test is_aparam_nall."""
for module in self.modules_to_test:
self.assertEqual(module.is_aparam_nall(), self.expected_aparam_nall)

def test_get_nnei(self):
"""Test get_nnei."""
expected_nnei = sum(self.expected_sel)
for module in self.modules_to_test:
self.assertEqual(module.get_nnei(), expected_nnei)

def test_get_ntypes(self):
"""Test get_ntypes."""
for module in self.modules_to_test:
self.assertEqual(module.get_ntypes(), len(self.expected_type_map))

def test_forward(self):
"""Test forward and forward_lower."""
nf = 1
nloc = 3
Fixed Show fixed Hide fixed
coord = to_torch_tensor(
np.array(
[
[0, 0, 0],
[0, 1, 0],
[0, 0, 1],
],
dtype=np.float64,
).reshape([nf, -1])
)
atype = to_torch_tensor(np.array([0, 0, 1], dtype=int).reshape([nf, -1]))
cell = to_torch_tensor(6.0 * np.eye(3).reshape([nf, 9]))
coord_ext, atype_ext, mapping, nlist = extend_input_and_build_neighbor_list(
coord,
atype,
self.expected_rcut,
self.expected_sel,
mixed_types=True,
box=cell,
)
ret_lower = []
for module in self.modules_to_test:
ret_lower.append(module.forward_common_atomic(coord_ext, atype_ext, nlist))
for r in ret_lower[1:]:
torch.testing.assert_close(ret_lower[0], r)