Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

(fix) Make bias statistics complete for all elements #4496

Open
wants to merge 132 commits into
base: devel
Choose a base branch
from

Conversation

SumGuo-88
Copy link
Collaborator

@SumGuo-88 SumGuo-88 commented Dec 23, 2024

Summary by CodeRabbit

  • New Features

    • Introduced a method to identify and count unique element types in datasets.
    • Added new parameters for enhanced control over statistics collection in training configurations.
    • Expanded dataset of chemical elements for improved mixed-type data processing.
    • Added command-line options to skip element checks and specify minimum frames during statistical data retrieval.
  • Bug Fixes

    • Improved error handling and reporting for type mapping issues in dataset loading.
  • Tests

    • Added unit tests for the make_stat_input function to ensure accurate processing of atomic types.
    • Created a new test file for comprehensive testing of statistical input functionality.
    • Enhanced testing framework for better coverage of element completion scenarios.

Copy link
Contributor

coderabbitai bot commented Dec 23, 2024

📝 Walkthrough

Walkthrough

The pull request introduces modifications in the DeepMD-kit's PyTorch utility modules. A new public method get_frame_index_for_elements is added to the DeepmdDataSetForLoader class in dataset.py, which retrieves frame indices and counts for each unique element in the dataset. The make_stat_input function in stat.py is updated to include new parameters for enhanced handling of atomic types, and a new test file is created to validate the functionality of make_stat_input. Additionally, attributes related to statistical calculations are added to the Trainer class, and error handling is improved in the data.py methods.

Changes

File Change Summary
deepmd/pt/utils/dataset.py Added public method get_frame_index_for_elements() to retrieve frame indices and counts for unique elements. Minor corrections made in the constructor's docstring.
deepmd/pt/utils/stat.py Updated make_stat_input() function to include min_frames_per_element_forstat and enable_element_completion parameters, with enhanced logic for atomic types and statistics handling. Added new methods for processing statistics.
source/tests/pt/test_make_stat_input.py Introduced unit tests for make_stat_input, including class TestMakeStatInput with relevant test methods.
deepmd/pt/train/training.py Added attributes min_frames_per_element_forstat and enable_element_completion to the Trainer class, initialized with default values.
deepmd/utils/argcheck.py Added optional argument min_frames_per_element_forstat and required argument enable_element_completion to the training configuration.
deepmd/utils/data.py Modified error handling in _load_set and _load_type_mix methods to improve robustness and error reporting. Added new method build_reidx_to_name_map().
source/tests/pt/mixed_type_data/sys.000000/type_map.raw Added new entries for chemical elements, expanding the dataset for mixed-type data processing.
deepmd/main.py Introduced new command-line argument --skip-elementcheck to the change-bias parser for enhanced flexibility.
deepmd/pt/entrypoints/main.py Updated change_bias function to include new parameters skip_elem_check and min_frames for controlling element completion during bias adjustments.

Suggested labels

Docs

Suggested reviewers

  • njzjz
  • iProzd

Tip

CodeRabbit's docstrings feature is now available as part of our Pro Plan! Simply use the command @coderabbitai generate docstrings to have CodeRabbit automatically generate docstrings for your pull request. We would love to hear your feedback on Discord.

✨ Finishing Touches
  • 📝 Generate Docstrings

Thank you for using CodeRabbit. We offer it for free to the OSS community and would appreciate your support in helping us grow. If you find it useful, would you consider giving us a shout-out on your favorite social media?

❤️ Share
🪧 Tips

Chat

There are 3 ways to chat with CodeRabbit:

  • Review comments: Directly reply to a review comment made by CodeRabbit. Example:
    • I pushed a fix in commit <commit_id>, please review it.
    • Generate unit testing code for this file.
    • Open a follow-up GitHub issue for this discussion.
  • Files and specific lines of code (under the "Files changed" tab): Tag @coderabbitai in a new review comment at the desired location with your query. Examples:
    • @coderabbitai generate unit testing code for this file.
    • @coderabbitai modularize this function.
  • PR comments: Tag @coderabbitai in a new PR comment to ask questions about the PR branch. For the best results, please provide a very specific query, as very limited context is provided in this mode. Examples:
    • @coderabbitai gather interesting stats about this repository and render them as a table. Additionally, render a pie chart showing the language distribution in the codebase.
    • @coderabbitai read src/utils.ts and generate unit testing code.
    • @coderabbitai read the files in the src/scheduler package and generate a class diagram using mermaid and a README in the markdown format.
    • @coderabbitai help me debug CodeRabbit configuration file.

Note: Be mindful of the bot's finite context window. It's strongly recommended to break down tasks such as reading entire modules into smaller chunks. For a focused discussion, use review comments to chat about specific files and their changes, instead of using the PR comments.

CodeRabbit Commands (Invoked using PR comments)

  • @coderabbitai pause to pause the reviews on a PR.
  • @coderabbitai resume to resume the paused reviews.
  • @coderabbitai review to trigger an incremental review. This is useful when automatic reviews are disabled for the repository.
  • @coderabbitai full review to do a full review from scratch and review all the files again.
  • @coderabbitai summary to regenerate the summary of the PR.
  • @coderabbitai generate docstrings to generate docstrings for this PR.
  • @coderabbitai resolve resolve all the CodeRabbit review comments.
  • @coderabbitai configuration to show the current CodeRabbit configuration for the repository.
  • @coderabbitai help to get help.

Other keywords and placeholders

  • Add @coderabbitai ignore anywhere in the PR description to prevent this PR from being reviewed.
  • Add @coderabbitai summary to generate the high-level summary at a specific location in the PR description.
  • Add @coderabbitai anywhere in the PR title to generate the title automatically.

CodeRabbit Configuration File (.coderabbit.yaml)

  • You can programmatically configure CodeRabbit by adding a .coderabbit.yaml file to the root of your repository.
  • Please see the configuration documentation for more information.
  • If your editor has YAML language server enabled, you can add the path at the top of this file to enable auto-completion and validation: # yaml-language-server: $schema=https://coderabbit.ai/integrations/schema.v2.json

Documentation and Community

  • Visit our Documentation for detailed information on how to use CodeRabbit.
  • Join our Discord Community to get help, request features, and share feedback.
  • Follow us on X/Twitter for updates and announcements.

Copy link
Contributor

@coderabbitai coderabbitai bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Actionable comments posted: 1

🧹 Nitpick comments (1)
deepmd/pt/utils/stat.py (1)

110-119: Avoid potential index-out-of-range errors when concatenating Tensors.
The code checks “isinstance(sys_stat[key], list) and isinstance(sys_stat[key][0], torch.Tensor)” without verifying that the list is non-empty. This might raise an IndexError if the list is empty. Consider adding a length check before accessing sys_stat[key][0].

Possible safe check:

-if isinstance(sys_stat[key], list) and isinstance(sys_stat[key][0], torch.Tensor):
+if isinstance(sys_stat[key], list) and len(sys_stat[key]) > 0 \
+   and isinstance(sys_stat[key][0], torch.Tensor):
📜 Review details

Configuration used: CodeRabbit UI
Review profile: CHILL
Plan: Pro

📥 Commits

Reviewing files that changed from the base of the PR and between cfe17a3 and 32da243.

📒 Files selected for processing (2)
  • deepmd/pt/utils/dataset.py (1 hunks)
  • deepmd/pt/utils/stat.py (1 hunks)
🧰 Additional context used
🪛 Ruff (0.8.2)
deepmd/pt/utils/dataset.py

44-44: SyntaxError: Expected an indented block after function definition

🔇 Additional comments (3)
deepmd/pt/utils/stat.py (3)

91-96: Validate 'atype' presence and handle empty arrays gracefully.
While updating the collected elements, consider explicitly checking that each 'atype' array is non-empty. If a dataset yields an empty array, it might bypass your missing-elements logic.

✅ Verification successful

Let me gather more information about how atype is handled in the codebase.


Let me try again with the correct file type flag for ripgrep.


Based on the code analysis, I can now generate the final response:

Empty arrays are handled safely by numpy.unique and set.update
The code uses numpy.unique() which safely handles empty arrays by returning an empty array, and set.update() which safely handles empty iterables. The logic for missing elements works correctly even with empty arrays since an empty array's unique values would simply not add any elements to the set.

🏁 Scripts executed

The following scripts were executed for the analysis:

Error: No shell scripts found


Script:

#!/bin/bash
# Search for patterns related to 'atype' handling and array emptiness checks
rg -A 3 "atype" --type python

# Also look for the specific class/function containing this code
ast-grep --pattern $'def $_(self, $_):
    $$$
    collected_elements = set()
    for sys_stat in lst:
        if "atype" in sys_stat:
            collected_elements.update($$$)
    $$$'

Length of output: 248


Script:

#!/bin/bash
# Search for patterns related to 'atype' handling and array emptiness checks
rg -A 3 "atype" -t py

# Look for similar array handling patterns in the codebase
rg -t py "numpy\.unique|\.update.*numpy" -A 2

# Find the specific file we're analyzing
fd "stat.py" --type f

Length of output: 89317


85-90: Consider using logging and verifying that all datasets are included.
You are only collecting the set of elements from the first dataset and simply printing them. If your intent is to gather possible elements across all datasets, you may want to iterate over all datasets. Also, using "log.info" would be more consistent than a raw "print" in a library setting.

Possible fix for the print statement:

-        print('we want', all_elements)
+        log.info(f"We want elements: {all_elements}")

97-109: Ensure partial coverage logic for missing elements is intended.
Here, frames are appended until the number of records reaches 'nbatches'. Verify that the short-circuiting with “break” actually meets your coverage needs for missing elements. If your goal is to gather as many frames as possible across all missing elements, you might need a more explicit limit or a different approach.

✅ Verification successful

Let me gather more context about this code to better understand the coverage logic for missing elements.


Let me search for more context about the initialization and usage of nbatches to better understand the coverage requirements.


Let me search for the initialization of nbatches to understand its purpose in the coverage logic.


Let me search for more context about how nbatches is used and its relationship with the dataset statistics.


Based on the gathered context, I can now provide a final response about the coverage logic for missing elements.

The current partial coverage logic is intentional and correct.

The code's behavior is appropriate because:

  1. nbatches is a parameter that defines the desired number of batches for collecting statistics, used consistently throughout the make_stat_input function
  2. The break condition if len(lst[i]['atype']) >= nbatches ensures each system collects up to the specified number of batches, preventing over-sampling
  3. This is consistent with how regular batches are collected earlier in the function where numb_batches = min(nbatches, len(dataloaders[i])) is used
  4. The goal is to gather a statistically significant sample (controlled by nbatches) rather than exhaustively processing all frames containing missing elements

The current implementation correctly balances between gathering sufficient data for statistics while maintaining consistent batch sizes across all elements.

🏁 Scripts executed

The following scripts were executed for the analysis:

Error: No shell scripts found


Script:

#!/bin/bash
# Let's first look at the broader context of this code
rg -B 10 -A 5 "for missing_element in missing_elements" deepmd/pt/utils/stat.py

# Also search for any related tests that might help understand the intended behavior
fd "test.*stat.*py" -x rg -l "missing_element"

# Look for the initialization of nbatches and lst variables
rg -B 5 "nbatches.*=|lst.*=" deepmd/pt/utils/stat.py

Length of output: 1724


Script:

#!/bin/bash
# Search for the function definition and its parameters
ast-grep --pattern 'def $FUNC($PARAMS) {
  $$$
  nbatches
  $$$
}'  deepmd/pt/utils/stat.py

# Look for any documentation or comments about nbatches
rg -B 3 -A 3 "nbatches" deepmd/pt/utils/stat.py

# Check if there are any tests that verify this behavior
fd "test.*stat.*py" -x cat {} 

Length of output: 66294


Script:

#!/bin/bash
# Look for the function definition and documentation
rg -B 10 "def make_stat_input" deepmd/pt/utils/stat.py

# Search for any tests that verify the behavior with missing elements
rg -B 5 -A 5 "missing_element" deepmd/pt/utils/stat.py

Length of output: 1079


Script:

#!/bin/bash
# Look for the full function implementation and its docstring
rg -B 20 -A 50 "def make_stat_input" deepmd/pt/utils/stat.py

# Search for any tests that verify the statistics collection
fd "test.*stat.*py" -x rg -A 10 "make_stat_input"

# Look for the initialization of lst and how frames are collected
rg -B 5 "lst.*=.*\[\]" deepmd/pt/utils/stat.py

Length of output: 4539

Copy link
Contributor

@coderabbitai coderabbitai bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Actionable comments posted: 1

🧹 Nitpick comments (2)
deepmd/pt/utils/stat.py (2)

89-89: Remove debug print statement.

The print statement print("we want", all_elements) appears to be debug code that should be removed or replaced with proper logging.

-        print("we want", all_elements)
+        log.debug(f"Required elements for statistics: {all_elements}")

97-111: Optimize nested loops and add error handling.

The nested loops for handling missing elements could be optimized, and error handling should be added for invalid frame indices.

         for missing_element in missing_elements:
             for i, dataset in enumerate(datasets):
                 if hasattr(dataset, "element_to_frames"):
-                    frame_indices = dataset.element_to_frames.get(
-                        missing_element, []
-                    )
+                    try:
+                        frame_indices = dataset.element_to_frames.get(missing_element, [])
+                        if not frame_indices:
+                            continue
+                            
+                        # Pre-check if we need more frames
+                        if len(lst[i]["atype"]) >= nbatches:
+                            break
+                            
+                        # Process frames in batch
+                        for frame_idx in frame_indices:
+                            frame_data = dataset[frame_idx]
+                            if any(key not in lst[i] for key in frame_data):
+                                lst[i].update({key: [] for key in frame_data if key not in lst[i]})
+                            for key in frame_data:
+                                lst[i][key].append(frame_data[key])
+                            if len(lst[i]["atype"]) >= nbatches:
+                                break
+                    except Exception as e:
+                        log.warning(f"Error processing frames for element {missing_element}: {e}")
+                        continue
-                    for frame_idx in frame_indices:
-                        if len(lst[i]["atype"]) >= nbatches:
-                            break
-                        frame_data = dataset[frame_idx]
-                        for key in frame_data:
-                            if key not in lst[i]:
-                                lst[i][key] = []
-                            lst[i][key].append(frame_data[key])
📜 Review details

Configuration used: CodeRabbit UI
Review profile: CHILL
Plan: Pro

📥 Commits

Reviewing files that changed from the base of the PR and between 32da243 and adf2315.

📒 Files selected for processing (2)
  • deepmd/pt/utils/dataset.py (1 hunks)
  • deepmd/pt/utils/stat.py (1 hunks)
🧰 Additional context used
🪛 Ruff (0.8.2)
deepmd/pt/utils/dataset.py

44-44: SyntaxError: Expected an indented block after function definition

🔇 Additional comments (2)
deepmd/pt/utils/dataset.py (2)

43-44: ⚠️ Potential issue

Fix the indentation error in method definition.

The method definition has incorrect indentation which will cause a SyntaxError. It should be aligned with other class methods.

-        def _build_element_to_frames(self):
-        """Mapping element types to frame indexes"""
+    def _build_element_to_frames(self):
+        """Mapping element types to frame indexes"""

Likely invalid or redundant comment.

🧰 Tools
🪛 Ruff (0.8.2)

44-44: SyntaxError: Expected an indented block after function definition


43-53: 🛠️ Refactor suggestion

Make frame limit configurable and enhance documentation.

  1. The hard-coded limit of 10 frames per element should be configurable.
  2. The docstring should be more descriptive about the method's purpose and return value.
-    def _build_element_to_frames(self):
-        """Mapping element types to frame indexes"""
+    def _build_element_to_frames(self, max_frames_per_element: int = 10) -> dict[int, list[int]]:
+        """Build a mapping of element types to their corresponding frame indices.
+        
+        Args:
+            max_frames_per_element: Maximum number of frames to store per element type.
+            
+        Returns:
+            A dictionary mapping element types (int) to lists of frame indices (list[int])
+            where each element type appears.
+        """
         element_to_frames = {element: [] for element in range(self._ntypes)}
         for frame_idx in range(len(self)):
             frame_data = self._data_system.get_item_torch(frame_idx)
 
             elements = frame_data["atype"]
             for element in set(elements):
-                if len(element_to_frames[element]) < 10:
+                if len(element_to_frames[element]) < max_frames_per_element:
                     element_to_frames[element].append(frame_idx)
         return element_to_frames

Likely invalid or redundant comment.

🧰 Tools
🪛 Ruff (0.8.2)

44-44: SyntaxError: Expected an indented block after function definition

@iProzd iProzd marked this pull request as draft December 24, 2024 14:37
Copy link
Contributor

@coderabbitai coderabbitai bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Actionable comments posted: 4

🧹 Nitpick comments (4)
source/tests/pt/test_make_stat_input.py (4)

14-23: Consider using collections.defaultdict for element_to_frames.
You can simplify the nested checks for element presence in the dictionary by using a defaultdict(list), which would eliminate the need for the explicit if atype not in self.element_to_frames: condition.

-from collections import defaultdict

class TestDataset:
    def __init__(self, samples):
        self.samples = samples
-        self.element_to_frames = {}
+        from collections import defaultdict
+        self.element_to_frames = defaultdict(list)
        for idx, sample in enumerate(samples):
            atypes = sample["atype"]
            for atype in atypes:
-                if atype not in self.element_to_frames:
-                    self.element_to_frames[atype] = []
                self.element_to_frames[atype].append(idx)

25-28: Rename the property to better reflect usage.
Using @property but naming it get_all_atype can be confusing. Consider a more descriptive name like all_atypes, since Python properties typically avoid "get_" prefixes.


53-59: Remove or use the assigned lst variable.
The variable lst is assigned but never used, according to static analysis hints. Consider removing it or using it for additional assertions.

 def test_make_stat_input(self):
     nbatches = 1
-    lst = make_stat_input(self.datasets, self.dataloaders, nbatches=nbatches)
+    _ = make_stat_input(self.datasets, self.dataloaders, nbatches=nbatches)
     all_elements = self.system.get_all_atype
     unique_elements = {1, 2}
     self.assertEqual(unique_elements, all_elements, "make_stat_input miss elements")
🧰 Tools
🪛 Ruff (0.8.2)

55-55: Local variable lst is assigned to but never used

Remove assignment to unused variable lst

(F841)


61-62: Optional test runner inclusion.
Having the if __name__ == "__main__": unittest.main() block is fine. You could remove it if tests are run by a dedicated test runner.

📜 Review details

Configuration used: CodeRabbit UI
Review profile: CHILL
Plan: Pro

📥 Commits

Reviewing files that changed from the base of the PR and between adf2315 and dc64307.

📒 Files selected for processing (3)
  • deepmd/pt/utils/dataset.py (4 hunks)
  • deepmd/pt/utils/stat.py (1 hunks)
  • source/tests/pt/test_make_stat_input.py (1 hunks)
🧰 Additional context used
🪛 Ruff (0.8.2)
source/tests/pt/test_make_stat_input.py

55-55: Local variable lst is assigned to but never used

Remove assignment to unused variable lst

(F841)

🔇 Additional comments (4)
source/tests/pt/test_make_stat_input.py (1)

40-52: Test setup looks good.
The dataset creation for testing is straightforward and clear. No issues found.

deepmd/pt/utils/dataset.py (2)

21-24: Docstring clarity is sufficient.
The docstring effectively describes constructor parameters. No corrections needed.


34-34: Initialization of element frames is a good approach.
Storing the result of _build_element_to_frames() in self.element_to_frames and self.get_all_atype reduces redundancy.

deepmd/pt/utils/stat.py (1)

86-94: No immediate issues with collection of atomic types.
Collecting and updating sets is correct.

Copy link
Contributor

@coderabbitai coderabbitai bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Actionable comments posted: 2

🧹 Nitpick comments (4)
deepmd/utils/data.py (1)

667-674: Consider providing more informative error details when the type map lookup fails.
While raising IndexError is appropriate, developers might benefit from including the failing value(s). You could, for instance, collect and display the out-of-range types to provide immediate troubleshooting clues. A custom exception or a more descriptive error message can significantly improve clarity and debuggability.

Here's an example of how you might refine the exception:

            except IndexError as e:
-                raise IndexError(
-                    f"some types in 'real_atom_types.npy' of set {set_name} are not contained in {self.get_ntypes()} types!"
-                ) from e
+                # Gather all invalid elements
+                invalid_types = np.unique(real_type[(real_type < 0) | (real_type >= len(self.type_idx_map))])
+                raise IndexError(
+                    f"One or more invalid types found in 'real_atom_types.npy' of set {set_name}: {invalid_types}. "
+                    f"Ensure all types are within [0, {self.get_ntypes()-1}]."
+                ) from e
deepmd/utils/argcheck.py (1)

2829-2834: Ensure user awareness of the new argument.

The new argument min_frames_per_element_forstat is useful for controlling statistic completeness. It might be helpful to specify the expected range (e.g., must be ≥ 1) and how large values impact memory or performance overhead.

source/tests/pt/test_make_stat_input.py (1)

68-68: Remove or utilize the unused variable.

The variable lst is assigned with the result of make_stat_input(...) but never used. If no further checks are applied, remove it to keep the code clean.

-        lst = make_stat_input(
+        make_stat_input(
🧰 Tools
🪛 Ruff (0.8.2)

68-68: Local variable lst is assigned to but never used

Remove assignment to unused variable lst

(F841)

deepmd/pt/utils/stat.py (1)

188-197: Double-check sets for collected vs. missing elements.

This code block re-checks missing elements with:

missing_element = all_element - collect_elements

Confirm that the logic aligns with the earlier missing_elements sets in lines 110–111 to avoid confusion or duplication.

🧰 Tools
🪛 Ruff (0.8.2)

188-188: SyntaxError: unindent does not match any outer indentation level


189-189: SyntaxError: Unexpected indentation

📜 Review details

Configuration used: CodeRabbit UI
Review profile: CHILL
Plan: Pro

📥 Commits

Reviewing files that changed from the base of the PR and between dc64307 and 725f1dd.

📒 Files selected for processing (6)
  • deepmd/pt/train/training.py (2 hunks)
  • deepmd/pt/utils/dataset.py (3 hunks)
  • deepmd/pt/utils/stat.py (3 hunks)
  • deepmd/utils/argcheck.py (1 hunks)
  • deepmd/utils/data.py (1 hunks)
  • source/tests/pt/test_make_stat_input.py (1 hunks)
🚧 Files skipped from review as they are similar to previous changes (1)
  • deepmd/pt/utils/dataset.py
🧰 Additional context used
🪛 Ruff (0.8.2)
deepmd/pt/utils/stat.py

134-134: SyntaxError: Expected a statement


134-134: SyntaxError: Expected a statement


134-134: SyntaxError: Expected a statement


134-134: SyntaxError: Expected a statement


135-135: SyntaxError: Unexpected indentation


144-144: SyntaxError: unindent does not match any outer indentation level


144-144: SyntaxError: Expected a statement


144-144: SyntaxError: Expected a statement


144-145: SyntaxError: Expected a statement


145-145: SyntaxError: Unexpected indentation


176-176: SyntaxError: Expected a statement


176-176: SyntaxError: Expected a statement


176-176: SyntaxError: Expected a statement


176-176: SyntaxError: Expected a statement


188-188: SyntaxError: unindent does not match any outer indentation level


189-189: SyntaxError: Unexpected indentation


231-231: SyntaxError: Expected a statement


231-231: SyntaxError: Expected a statement


231-231: SyntaxError: Expected a statement


231-231: SyntaxError: Expected a statement

source/tests/pt/test_make_stat_input.py

43-43: Loop control variable idx not used within loop body

Rename unused idx to _idx

(B007)


68-68: Local variable lst is assigned to but never used

Remove assignment to unused variable lst

(F841)

🔇 Additional comments (4)
deepmd/pt/train/training.py (2)

145-147: Add type check or validation for the statistic threshold.

While setting self.min_frames_per_element_forstat, consider ensuring it's a strictly positive integer. If a negative or zero value is passed, it may cause runtime issues or meaningless statistics.


232-232: Parameter usage looks correct.

Passing self.min_frames_per_element_forstat to make_stat_input aligns with the newly introduced functionality. Just be sure to verify that all call sites expect this parameter and properly handle out-of-range values.

source/tests/pt/test_make_stat_input.py (1)

41-50: Optimize loop variable usage.

The static analysis hint suggests renaming _idx if it were truly unused, but here idx is used to assign frames. The accusations of an unused loop variable are false. You can safely ignore that static analysis hint.

🧰 Tools
🪛 Ruff (0.8.2)

43-43: Loop control variable idx not used within loop body

Rename unused idx to _idx

(B007)

deepmd/pt/utils/stat.py (1)

52-110: Confirm correctness of cumulative element count logic.

You aggregate total_element_counts[elem]["count"], but also track indices. Ensure you don’t exceed list boundaries when collecting indices for up to min_frames_per_element_forstat. If more frames exist, consider whether you need them to fulfill certain statistics.

Copy link
Contributor

@coderabbitai coderabbitai bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Actionable comments posted: 4

♻️ Duplicate comments (3)
source/tests/pt/test_make_stat_input.py (3)

62-72: ⚠️ Potential issue

Test with multiple batch sizes.

Using a fixed batch size of 1 may not catch batch-related issues.

-            cls.dataloaders = []
-            for dataset in cls.datasets:
-                dataloader = DataLoader(
-                    dataset,
-                    batch_size=1,
-                    num_workers=0,
-                    drop_last=False,
-                    collate_fn=collate_fn,
-                    pin_memory=False,
-                )
-                cls.dataloaders.append(dataloader)
+            # Test with different batch sizes
+            cls.batch_sizes = [1, 4, 16]
+            cls.dataloaders = {}
+            for batch_size in cls.batch_sizes:
+                loaders = []
+                for dataset in cls.datasets:
+                    loader = DataLoader(
+                        dataset,
+                        batch_size=batch_size,
+                        num_workers=0,
+                        drop_last=False,
+                        collate_fn=collate_fn,
+                        pin_memory=False,
+                    )
+                    loaders.append(loader)
+                cls.dataloaders[batch_size] = loaders

171-172: ⚠️ Potential issue

Use self.real_ntypes instead of hard-coded ntypes value.

The hard-coded ntypes=57 should use the derived value from the dataset.

-        bias_ori, _ = compute_output_stats(lst_ori, ntypes=57)
-        bias_all, _ = compute_output_stats(lst_all, ntypes=57)
+        bias_ori, _ = compute_output_stats(lst_ori, ntypes=self.real_ntypes)
+        bias_all, _ = compute_output_stats(lst_all, ntypes=self.real_ntypes)

192-193: 🛠️ Refactor suggestion

Document missing elements and improve test method.

The test method needs better documentation of missing elements and their impact.

-        # missing element:13,31,37
-        # only one frame would be count
+        """Test make_stat_input with element completion enabled/disabled.
+        
+        Missing elements in test data:
+        - Element 13: Missing due to [reason]
+        - Element 31: Missing due to [reason]
+        - Element 37: Missing due to [reason]
+        
+        When element completion is disabled:
+        - Only one frame is counted because [explain why]
+        - Missing elements should have zero bias
+        """
🧹 Nitpick comments (1)
source/tests/pt/test_make_stat_input.py (1)

25-44: Optimize dictionary key lookup in collate function.

The dictionary key lookup in the loop can be optimized.

-    for key in batch[0].keys():
+    for key in batch[0]:
🧰 Tools
🪛 Ruff (0.8.2)

30-30: Use key in dict instead of key in dict.keys()

Remove .keys()

(SIM118)

📜 Review details

Configuration used: CodeRabbit UI
Review profile: CHILL
Plan: Pro

📥 Commits

Reviewing files that changed from the base of the PR and between e943950 and 61671af.

📒 Files selected for processing (1)
  • source/tests/pt/test_make_stat_input.py (1 hunks)
🧰 Additional context used
🪛 Ruff (0.8.2)
source/tests/pt/test_make_stat_input.py

30-30: Use key in dict instead of key in dict.keys()

Remove .keys()

(SIM118)

⏰ Context from checks skipped due to timeout of 90000ms (19)
  • GitHub Check: Test Python (2, 3.12)
  • GitHub Check: Test Python (1, 3.12)
  • GitHub Check: Build wheels for cp310-manylinux_aarch64
  • GitHub Check: Build wheels for cp311-win_amd64
  • GitHub Check: Build wheels for cp311-macosx_arm64
  • GitHub Check: Build wheels for cp311-macosx_x86_64
  • GitHub Check: Build wheels for cp311-manylinux_x86_64
  • GitHub Check: Build wheels for cp311-manylinux_x86_64
  • GitHub Check: Build C++ (clang, clang)
  • GitHub Check: Build C++ (rocm, rocm)
  • GitHub Check: Build C++ (cuda120, cuda)
  • GitHub Check: Build C++ (cuda, cuda)
  • GitHub Check: Build C++ (cpu, cpu)
  • GitHub Check: Build C library (2.14, >=2.5.0rc0,<2.15, libdeepmd_c_cu11.tar.gz)
  • GitHub Check: Test C++ (false)
  • GitHub Check: Build C library (2.18, libdeepmd_c.tar.gz)
  • GitHub Check: Test C++ (true)
  • GitHub Check: Analyze (python)
  • GitHub Check: Analyze (c-cpp)

Copy link
Contributor

@coderabbitai coderabbitai bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Actionable comments posted: 4

♻️ Duplicate comments (3)
source/tests/pt/test_make_stat_input.py (1)

54-81: 🛠️ Refactor suggestion

Test setup needs significant improvements.

Current setup has several limitations:

  1. Uses single system when more than 10 were requested
  2. Hard-codes real_ntypes = 6 instead of deriving from dataset
  3. Fixed batch size of 1 may not catch batch-related issues
  4. Missing CUDA availability check
     @classmethod
     def setUpClass(cls):
-        with torch.device("cpu"):
+        device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
+        with torch.device(device):
-            system_path = str(Path(__file__).parent / "mixed_type_data/sys.000000")
-            cls.real_ntypes = 6
-            cls.datasets = DeepmdDataSetForLoader(system=system_path)
+            # Load multiple systems for comprehensive testing
+            base_path = Path(__file__).parent / "mixed_type_data"
+            system_paths = [str(base_path / f"sys.{i:06d}") for i in range(15)]
+            cls.datasets = [DeepmdDataSetForLoader(system=path) for path in system_paths]
+            
+            # Derive number of types from the datasets
+            cls.real_ntypes = max(max(dataset.get_types()) for dataset in cls.datasets) + 1

             data_requirements = [
                 DataRequirementItem(
                     "energy",
                     ndof=1,
                     atomic=False,
                 ),
             ]
-            cls.datasets.add_data_requirement(data_requirements)
-            cls.datasets = [cls.datasets]
+            for dataset in cls.datasets:
+                dataset.add_data_requirement(data_requirements)
             
-            cls.dataloaders = []
-            for dataset in cls.datasets:
-                dataloader = DataLoader(
-                    dataset,
-                    batch_size=1,
-                    num_workers=0,
-                    drop_last=False,
-                    collate_fn=collate_fn,
-                    pin_memory=False,
-                )
-                cls.dataloaders.append(dataloader)
+            # Test with different batch sizes
+            cls.batch_sizes = [1, 4, 16]
+            cls.dataloaders = {}
+            for batch_size in cls.batch_sizes:
+                loaders = []
+                for dataset in cls.datasets:
+                    loader = DataLoader(
+                        dataset,
+                        batch_size=batch_size,
+                        num_workers=0,
+                        drop_last=False,
+                        collate_fn=collate_fn,
+                        pin_memory=False,
+                    )
+                    loaders.append(loader)
+                cls.dataloaders[batch_size] = loaders
deepmd/pt/utils/stat.py (2)

38-44: 🛠️ Refactor suggestion

Add input validation for new parameters.

The function should validate the new parameters to ensure they meet requirements:

  • min_frames_per_element_forstat should be positive
  • datasets should not be empty and should match dataloaders length
def make_stat_input(
    datasets,
    dataloaders,
    nbatches,
    min_frames_per_element_forstat=10,
    enable_element_completion=True,
):
+    if not datasets:
+        raise ValueError("No datasets provided")
+    if len(datasets) != len(dataloaders):
+        raise ValueError("Number of datasets does not match number of dataloaders")
+    if min_frames_per_element_forstat < 1:
+        raise ValueError("min_frames_per_element_forstat must be positive")

195-225: 🛠️ Refactor suggestion

Replace assertion with proper exception handling.

The assertion should be replaced with a proper exception that provides clear guidance.

     def process_with_new_frame(
         sys_indices, newele_counter, min_frames, datasets, lst, collect_ele, miss
     ):
         """Process missing elements by adding new frames until the minimum is reached."""
+        if not sys_indices:
+            log.warning(f"No system indices provided for element {miss}")
+            return
         for sys_info in sys_indices:
             sys_index = sys_info["sys_index"]
             frames = sys_info["frames"]
+            if not frames:
+                log.warning(f"No frames found for system {sys_index}")
+                continue
             sys = datasets if isinstance(datasets, list) else [datasets]
             sys = sys[sys_index]
             for frame in frames:
                 newele_counter += 1
                 if newele_counter > min_frames:
                     break
-                frame_data = sys.__getitem__(frame)
+                try:
+                    frame_data = sys.__getitem__(frame)
+                    if "atype" not in frame_data:
+                        raise ValueError(f"Frame {frame} does not contain type information")
+                    if miss not in frame_data["atype"]:
+                        raise ValueError(
+                            f"Element {miss} not found in frame {frame}. "
+                            "To proceed without element completion:\n"
+                            "1. For change-bias mode: Use '--skip-elementcheck'\n"
+                            "2. For model training: Set 'enable_element_completion' to False"
+                        )
+                except Exception as e:
+                    log.error(f"Failed to process frame {frame} from system {sys_index}: {e}")
+                    raise
🧹 Nitpick comments (3)
source/tests/pt/test_make_stat_input.py (2)

33-51: Add error handling and type hints to collate_fn.

The function could be improved with:

  1. Type hints for parameters and return value
  2. Better error handling for unsupported data types
  3. Documentation for supported data types
-def collate_fn(batch):
+def collate_fn(batch: Union[dict, list[dict]]) -> dict:
+    """Collate batch data into a single dictionary.
+    
+    Args:
+        batch: A single dict or list of dicts containing batch data
+        
+    Returns:
+        dict: Collated batch with tensors stacked along first dimension
+        
+    Supported data types:
+        - torch.Tensor
+        - numpy.ndarray
+        - Numeric types convertible to tensor
+    """
     if isinstance(batch, dict):
         batch = [batch]
 
     out = {}
     for key in batch[0].keys():
         items = [sample[key] for sample in batch]
 
         if isinstance(items[0], torch.Tensor):
             out[key] = torch.stack(items, dim=0)
         elif isinstance(items[0], np.ndarray):
             out[key] = torch.from_numpy(np.stack(items, axis=0))
         else:
             try:
                 out[key] = torch.tensor(items)
-            except Exception:
+            except (TypeError, ValueError) as e:
+                log.warning(f"Could not convert {key} to tensor: {e}")
                 out[key] = items
 
     return out
🧰 Tools
🪛 Ruff (0.8.2)

38-38: Use key in dict instead of key in dict.keys()

Remove .keys()

(SIM118)


82-83: Add docstring to helper method.

The method needs documentation explaining its purpose and parameters.

     def count_non_zero_elements(self, tensor, threshold=1e-8):
+        """Count elements in tensor with absolute value above threshold.
+        
+        Args:
+            tensor: Input tensor to analyze
+            threshold: Minimum absolute value to consider non-zero (default: 1e-8)
+            
+        Returns:
+            int: Number of elements with absolute value > threshold
+        """
         return torch.sum(torch.abs(tensor) > threshold).item()
deepmd/pt/utils/stat.py (1)

111-130: Improve error handling in process_batches.

The function silently passes on unknown data types and may raise KeyError.

     def process_batches(dataloader, sys_stat, nbatches):
         """Process batches from a dataloader and collect statistics."""
+        def process_tensor_data(data):
+            """Process tensor data with proper error handling."""
+            if data is None:
+                return None
+            try:
+                if isinstance(data, torch.Tensor):
+                    return data
+                elif isinstance(data, np.float32):
+                    return data
+                else:
+                    log.warning(f"Unexpected data type {type(data)}")
+                    return None
+            except Exception as e:
+                log.error(f"Error processing tensor data: {e}")
+                raise

         iterator = iter(dataloader)
         numb_batches = min(nbatches, len(dataloader))
         for _ in range(numb_batches):
             try:
                 stat_data = next(iterator)
             except StopIteration:
                 iterator = iter(dataloader)
                 stat_data = next(iterator)
-            for dd in stat_data:
-                if stat_data[dd] is None:
+            for dd, value in stat_data.items():
+                result = process_tensor_data(value)
+                if result is None:
                     sys_stat[dd] = None
-                elif isinstance(stat_data[dd], torch.Tensor):
+                elif isinstance(result, torch.Tensor):
                     if dd not in sys_stat:
                         sys_stat[dd] = []
-                    sys_stat[dd].append(stat_data[dd])
-                elif isinstance(stat_data[dd], np.float32):
-                    sys_stat[dd] = stat_data[dd]
-                else:
-                    pass
+                    sys_stat[dd].append(result)
+                elif isinstance(result, np.float32):
+                    sys_stat[dd] = result
📜 Review details

Configuration used: CodeRabbit UI
Review profile: CHILL
Plan: Pro

📥 Commits

Reviewing files that changed from the base of the PR and between 61671af and 7579d59.

📒 Files selected for processing (2)
  • deepmd/pt/utils/stat.py (1 hunks)
  • source/tests/pt/test_make_stat_input.py (1 hunks)
🧰 Additional context used
🪛 Ruff (0.8.2)
source/tests/pt/test_make_stat_input.py

38-38: Use key in dict instead of key in dict.keys()

Remove .keys()

(SIM118)


307-307: Redefinition of unused test_process_missing_elements from line 103

(F811)

⏰ Context from checks skipped due to timeout of 90000ms (20)
  • GitHub Check: Test Python (5, 3.12)
  • GitHub Check: Test Python (4, 3.12)
  • GitHub Check: Test Python (4, 3.9)
  • GitHub Check: Test Python (3, 3.12)
  • GitHub Check: Test Python (3, 3.9)
  • GitHub Check: Test Python (2, 3.12)
  • GitHub Check: Test Python (2, 3.9)
  • GitHub Check: Test Python (1, 3.12)
  • GitHub Check: Test Python (1, 3.9)
  • GitHub Check: Build C++ (clang, clang)
  • GitHub Check: Test C++ (false)
  • GitHub Check: Build C++ (rocm, rocm)
  • GitHub Check: Build C library (2.14, >=2.5.0rc0,<2.15, libdeepmd_c_cu11.tar.gz)
  • GitHub Check: Test C++ (true)
  • GitHub Check: Build C++ (cuda120, cuda)
  • GitHub Check: Build C library (2.18, libdeepmd_c.tar.gz)
  • GitHub Check: Build C++ (cuda, cuda)
  • GitHub Check: Build C++ (cpu, cpu)
  • GitHub Check: Analyze (python)
  • GitHub Check: Analyze (c-cpp)

Copy link
Contributor

@coderabbitai coderabbitai bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Actionable comments posted: 4

🧹 Nitpick comments (1)
source/tests/pt/test_make_stat_input.py (1)

46-49: Improve error handling in collate_fn.

The current broad exception handling could mask important errors. Consider catching specific exceptions and providing more descriptive error messages.

-            try:
-                out[key] = torch.tensor(items)
-            except Exception:
-                out[key] = items
+            try:
+                out[key] = torch.tensor(items)
+            except (ValueError, TypeError) as e:
+                # If tensor conversion fails, keep original items
+                out[key] = items
+                print(f"Warning: Could not convert {key} to tensor: {str(e)}")
📜 Review details

Configuration used: CodeRabbit UI
Review profile: CHILL
Plan: Pro

📥 Commits

Reviewing files that changed from the base of the PR and between b592185 and b0418c7.

📒 Files selected for processing (1)
  • source/tests/pt/test_make_stat_input.py (1 hunks)
🧰 Additional context used
🪛 Ruff (0.8.2)
source/tests/pt/test_make_stat_input.py

38-38: Use key in dict instead of key in dict.keys()

Remove .keys()

(SIM118)

⏰ Context from checks skipped due to timeout of 90000ms (9)
  • GitHub Check: Build wheels for cp310-manylinux_aarch64
  • GitHub Check: Build wheels for cp311-win_amd64
  • GitHub Check: Build wheels for cp311-macosx_arm64
  • GitHub Check: Build C++ (clang, clang)
  • GitHub Check: Build wheels for cp311-macosx_x86_64
  • GitHub Check: Build C++ (rocm, rocm)
  • GitHub Check: Build C++ (cuda120, cuda)
  • GitHub Check: Build C++ (cuda, cuda)
  • GitHub Check: Build C++ (cpu, cpu)
🔇 Additional comments (1)
source/tests/pt/test_make_stat_input.py (1)

82-83: LGTM! Well-implemented helper method.

The count_non_zero_elements method correctly handles floating-point comparisons using a threshold parameter.

Copy link
Contributor

@coderabbitai coderabbitai bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Actionable comments posted: 3

♻️ Duplicate comments (1)
source/tests/pt/test_make_stat_input.py (1)

85-101: 🛠️ Refactor suggestion

Test methods need to handle multiple batch sizes.

The test methods currently use a fixed batch size, which may not catch batch-related issues.

     def test_make_stat_input_with_element_counts(self):
-        lst = make_stat_input(
-            datasets=self.datasets,
-            dataloaders=self.dataloaders,
-            nbatches=1,
-            min_frames_per_element_forstat=1,
-            enable_element_completion=True,
-        )
-        bias, _ = compute_output_stats(lst, ntypes=57)
+        for batch_size in self.batch_sizes:
+            lst = make_stat_input(
+                datasets=self.datasets,
+                dataloaders=self.dataloaders[batch_size],
+                nbatches=10,
+                min_frames_per_element_forstat=1,
+                enable_element_completion=True,
+            )
+            bias, _ = compute_output_stats(lst, ntypes=self.real_ntypes)
🧹 Nitpick comments (2)
source/tests/pt/test_make_stat_input.py (2)

33-52: Optimize dictionary key lookup in collate_fn.

The dictionary key lookup in the loop can be simplified.

-    for key in batch[0].keys():
+    for key in batch[0]:
🧰 Tools
🪛 Ruff (0.8.2)

38-38: Use key in dict instead of key in dict.keys()

Remove .keys()

(SIM118)


180-181: Document missing elements and their impact.

The comment about missing elements needs better documentation to explain why these elements are missing and how it affects the test.

-        # missing element:13,31,37
-        # only one frame would be count
+        """Test make_stat_input with element completion disabled.
+        
+        Missing elements in test data:
+        - Element 13: Missing due to [reason]
+        - Element 31: Missing due to [reason]
+        - Element 37: Missing due to [reason]
+        
+        When element completion is disabled:
+        - Only one frame is counted because [explain why]
+        - Missing elements should have zero bias
+        """
📜 Review details

Configuration used: CodeRabbit UI
Review profile: CHILL
Plan: Pro

📥 Commits

Reviewing files that changed from the base of the PR and between b0418c7 and f425ad5.

📒 Files selected for processing (1)
  • source/tests/pt/test_make_stat_input.py (1 hunks)
🧰 Additional context used
🪛 Ruff (0.8.2)
source/tests/pt/test_make_stat_input.py

38-38: Use key in dict instead of key in dict.keys()

Remove .keys()

(SIM118)

⏰ Context from checks skipped due to timeout of 90000ms (20)
  • GitHub Check: Test Python (6, 3.12)
  • GitHub Check: Test Python (6, 3.9)
  • GitHub Check: Test Python (5, 3.12)
  • GitHub Check: Test Python (5, 3.9)
  • GitHub Check: Test Python (4, 3.12)
  • GitHub Check: Test Python (4, 3.9)
  • GitHub Check: Test Python (3, 3.12)
  • GitHub Check: Test Python (3, 3.9)
  • GitHub Check: Test Python (2, 3.12)
  • GitHub Check: Test Python (2, 3.9)
  • GitHub Check: Test Python (1, 3.12)
  • GitHub Check: Test Python (1, 3.9)
  • GitHub Check: Build C++ (clang, clang)
  • GitHub Check: Build C++ (rocm, rocm)
  • GitHub Check: Build C++ (cuda120, cuda)
  • GitHub Check: Test C++ (false)
  • GitHub Check: Build C++ (cuda, cuda)
  • GitHub Check: Build C++ (cpu, cpu)
  • GitHub Check: Test C++ (true)
  • GitHub Check: Analyze (c-cpp)
🔇 Additional comments (1)
source/tests/pt/test_make_stat_input.py (1)

268-303: LGTM!

The test_process_element_count_and_missing_elements method is well-structured and includes proper assertions to verify the behavior.

Copy link
Collaborator

@iProzd iProzd left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The docstring is not clear. Please make it clear yourself instead of using AI.
Process through make_stat_input does not contain statistics process, it is just making an input data list for subsequent statistics.

Copy link
Contributor

@coderabbitai coderabbitai bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Actionable comments posted: 6

🧹 Nitpick comments (1)
deepmd/pt/utils/stat.py (1)

38-60: Improve docstring clarity.

The docstring needs to be more descriptive about the function's purpose and return value.

-    """Get list for statistics from datasets.
+    """Get a list of statistical data from datasets, with support for element completion.
+
+    This function processes datasets to compute statistics, ensuring each element has sufficient
+    representation in the data. When element completion is enabled, it will attempt to find
+    additional frames containing underrepresented elements to meet the minimum frame requirement.

     Parameters
     ----------
     nbatches : int
         The number of batches to process from each dataloader.
     min_frames_per_element_forstat : int, optional
         The minimum number of frames required for an element to be considered, default is 10.
     enable_element_completion : bool, optional
         If True, enables element completion for missing elements, default is True.

     Returns
     -------
     list
-        A list containing the statistics for each dataset processed.
+        A list of dictionaries containing processed statistics for each dataset.
+        Each dictionary contains tensor data for various properties (e.g., coordinates,
+        energies, forces) aggregated from the dataset.
     """
📜 Review details

Configuration used: CodeRabbit UI
Review profile: CHILL
Plan: Pro

📥 Commits

Reviewing files that changed from the base of the PR and between f425ad5 and fb2520c.

📒 Files selected for processing (1)
  • deepmd/pt/utils/stat.py (1 hunks)
⏰ Context from checks skipped due to timeout of 90000ms (5)
  • GitHub Check: Build C library (2.14, >=2.5.0rc0,<2.15, libdeepmd_c_cu11.tar.gz)
  • GitHub Check: Build C library (2.18, libdeepmd_c.tar.gz)
  • GitHub Check: Analyze (python)
  • GitHub Check: Analyze (javascript-typescript)
  • GitHub Check: Analyze (c-cpp)

@SumGuo-88 SumGuo-88 requested a review from iProzd February 25, 2025 08:44
Copy link
Contributor

@coderabbitai coderabbitai bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Actionable comments posted: 1

♻️ Duplicate comments (1)
deepmd/pt/utils/stat.py (1)

64-64: 🛠️ Refactor suggestion

Remove unused variable.

The variable global_element_counts is initialized but never used within the function scope.

    total_element_types = set()
-    global_element_counts = {}
    global_type_name = {}
    collect_ele = defaultdict(int)
🧹 Nitpick comments (7)
deepmd/pt/utils/stat.py (7)

38-60: Input validation needed for new parameters.

The function make_stat_input has been updated with new parameters, but there's no validation to ensure they have valid values.

def make_stat_input(
    datasets,
    dataloaders,
    nbatches,
    min_frames_per_element_forstat=10,
    enable_element_completion=True,
):
+    if not datasets:
+        raise ValueError("No datasets provided")
+    if len(datasets) != len(dataloaders):
+        raise ValueError("Number of datasets does not match number of dataloaders")
+    if min_frames_per_element_forstat < 1:
+        raise ValueError("min_frames_per_element_forstat must be positive")
+    if nbatches < 1:
+        raise ValueError("nbatches must be positive")

80-88: Add error handling to prevent runtime exceptions.

The tensor operations could potentially fail if the data format is unexpected. Add appropriate try-except blocks to handle potential errors.

-            process_batches(dataloader, sys_stat, nbatches)
-            if do_element_completion:
-                element_data = torch.cat(sys_stat["atype"], dim=0)
-                collect_values = torch.unique(element_data.flatten(), sorted=True)
-                for elem in collect_values.tolist():
-                    frames_with_elem = torch.any(element_data == elem, dim=1)
-                    row_indices = torch.where(frames_with_elem)[0]
-                    collect_ele[elem] += len(row_indices)
+            try:
+                process_batches(dataloader, sys_stat, nbatches)
+                if do_element_completion:
+                    if "atype" not in sys_stat or not sys_stat["atype"]:
+                        log.warning(f"No type information found in dataset {sys_index}")
+                        continue
+                    element_data = torch.cat(sys_stat["atype"], dim=0)
+                    collect_values = torch.unique(element_data.flatten(), sorted=True)
+                    for elem in collect_values.tolist():
+                        frames_with_elem = torch.any(element_data == elem, dim=1)
+                        row_indices = torch.where(frames_with_elem)[0]
+                        collect_ele[elem] += len(row_indices)
+            except Exception as e:
+                log.error(f"Error processing dataset {sys_index}: {e}")
+                continue

114-133: Add error handling for unexpected data types.

The function silently skips processing for unknown data types. Add explicit logging to capture potential issues.

        for dd in stat_data:
            if stat_data[dd] is None:
                sys_stat[dd] = None
            elif isinstance(stat_data[dd], torch.Tensor):
                if dd not in sys_stat:
                    sys_stat[dd] = []
                sys_stat[dd].append(stat_data[dd])
            elif isinstance(stat_data[dd], np.float32):
                sys_stat[dd] = stat_data[dd]
+            else:
+                log.warning(f"Unexpected data type {type(stat_data[dd])} for key {dd}")

135-147: Add error handling for tensor operations.

The tensor concatenation operation could fail if tensors have incompatible shapes or if the list is empty. Add error handling for these cases.

def finalize_stats(sys_stat):
    """Finalize statistics based on the data type."""
    for key in sys_stat:
-        if isinstance(sys_stat[key], np.float32):
-            pass
-        elif sys_stat[key] is None or (
-            isinstance(sys_stat[key], list)
-            and (len(sys_stat[key]) == 0 or sys_stat[key][0] is None)
-        ):
-            sys_stat[key] = None
-        elif isinstance(sys_stat[key][0], torch.Tensor):
-            sys_stat[key] = torch.cat(sys_stat[key], dim=0)
+        try:
+            if isinstance(sys_stat[key], np.float32):
+                continue
+            elif sys_stat[key] is None or (
+                isinstance(sys_stat[key], list)
+                and (len(sys_stat[key]) == 0 or sys_stat[key][0] is None)
+            ):
+                sys_stat[key] = None
+            elif isinstance(sys_stat[key][0], torch.Tensor):
+                sys_stat[key] = torch.cat(sys_stat[key], dim=0)
+            else:
+                log.warning(f"Unexpected data type for key {key}")
+        except Exception as e:
+            log.error(f"Error finalizing stats for key {key}: {e}")
+            raise

150-177: Add validation for element counts data.

The function should validate the element counts and data format to prevent potential issues with malformed data.

def process_element_counts(
    sys_index,
    dataset,
    min_frames,
    global_element_counts,
    global_type_name,
    total_element_types,
):
    """Count element occurrences in the dataset and update global statistics."""
    element_counts, type_name = dataset.get_frame_index_for_elements()
+    if not isinstance(element_counts, dict):
+        log.warning(f"Invalid element counts for dataset {sys_index}")
+        return
    for new_idx, elem_name in type_name.items():
        if new_idx not in global_type_name:
            global_type_name[new_idx] = elem_name
    for elem, data in element_counts.items():
+        if not isinstance(data, dict) or "indices" not in data or "frames" not in data:
+            log.warning(f"Invalid data format for element {elem}")
+            continue

179-196: Add validation for missing elements processing.

The function needs validation for empty inputs and better logging for insufficient frames.

def process_missing_elements(
    min_frames, global_element_counts, total_element_types, collect_ele, datasets, lst
):
    """Handle missing elements by adding them to the statistics."""
+    if not total_element_types:
+        log.warning("No elements found in any dataset")
+        return
+    if not global_element_counts:
+        log.warning("No element counts available")
+        return
    collect_elements = collect_ele.keys()
    missing_elements = total_element_types - collect_elements
    collect_miss_element = set()
    for ele, count in collect_ele.items():
        if count < min_frames:
+            log.info(f"Element {ele} has insufficient frames: {count}/{min_frames}")
            collect_miss_element.add(ele)
            missing_elements.add(ele)
    for miss in missing_elements:
+        if miss not in global_element_counts:
+            log.warning(f"No count data available for element {miss}")
+            continue

212-224: Extract common tensor processing logic.

The tensor processing logic is duplicated in multiple places. Extract it into a helper function to reduce duplication and improve maintainability.

+            def process_tensor_data(data):
+                """Process tensor data with proper error handling."""
+                if data is None:
+                    return None
+                try:
+                    if isinstance(data, np.ndarray):
+                        tensor_data = torch.from_numpy(data).unsqueeze(0)
+                        return tensor_data
+                    elif isinstance(data, np.float32):
+                        return data
+                    return None
+                except Exception as e:
+                    log.error(f"Error processing tensor data: {e}")
+                    raise
+
             for dd in frame_data:
                 if dd == "type":
                     continue
-                if frame_data[dd] is None:
-                    sys_stat_new[dd] = None
-                elif isinstance(frame_data[dd], np.ndarray):
-                    if dd not in sys_stat_new:
-                        sys_stat_new[dd] = []
-                    tensor_data = torch.from_numpy(frame_data[dd]).unsqueeze(0)
-                    sys_stat_new[dd].append(tensor_data)
-                elif isinstance(frame_data[dd], np.float32):
-                    sys_stat_new[dd] = frame_data[dd]
+                result = process_tensor_data(frame_data[dd])
+                if result is None:
+                    sys_stat_new[dd] = None
+                elif isinstance(result, torch.Tensor):
+                    if dd not in sys_stat_new:
+                        sys_stat_new[dd] = []
+                    sys_stat_new[dd].append(result)
+                elif isinstance(result, np.float32):
+                    sys_stat_new[dd] = result
📜 Review details

Configuration used: CodeRabbit UI
Review profile: CHILL
Plan: Pro

📥 Commits

Reviewing files that changed from the base of the PR and between fb2520c and 4475370.

📒 Files selected for processing (1)
  • deepmd/pt/utils/stat.py (1 hunks)
⏰ Context from checks skipped due to timeout of 90000ms (19)
  • GitHub Check: Test Python (5, 3.12)
  • GitHub Check: Test Python (5, 3.9)
  • GitHub Check: Test Python (4, 3.12)
  • GitHub Check: Test Python (4, 3.9)
  • GitHub Check: Test Python (3, 3.12)
  • GitHub Check: Test Python (3, 3.9)
  • GitHub Check: Test Python (2, 3.12)
  • GitHub Check: Test Python (2, 3.9)
  • GitHub Check: Test Python (1, 3.12)
  • GitHub Check: Test Python (1, 3.9)
  • GitHub Check: Build C++ (clang, clang)
  • GitHub Check: Build C++ (rocm, rocm)
  • GitHub Check: Build C++ (cuda120, cuda)
  • GitHub Check: Build C++ (cuda, cuda)
  • GitHub Check: Build C++ (cpu, cpu)
  • GitHub Check: Build C library (2.14, >=2.5.0rc0,<2.15, libdeepmd_c_cu11.tar.gz)
  • GitHub Check: Build C library (2.18, libdeepmd_c.tar.gz)
  • GitHub Check: Analyze (python)
  • GitHub Check: Analyze (c-cpp)
🔇 Additional comments (1)
deepmd/pt/utils/stat.py (1)

68-76: Good user feedback with clear status logging.

The added logging statements provide clear feedback on whether element completion is enabled, and the do_element_completion variable improves code readability by combining the conditions.

@njzjz
Copy link
Member

njzjz commented Mar 5, 2025

What is the bias statistics result before and after this PR?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Projects
None yet
Development

Successfully merging this pull request may close these issues.

[BUG] Incomplete and risky bias statistics
4 participants