Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

UT for model devi C++ interface #731

Merged
merged 2 commits into from
Jun 14, 2021
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
159 changes: 159 additions & 0 deletions source/api_cc/tests/test_deeppot_model_devi.cc
Original file line number Diff line number Diff line change
Expand Up @@ -68,6 +68,69 @@ class TestInferDeepPotModeDevi : public ::testing::Test
};
};


class TestInferDeepPotModeDeviPython : public ::testing::Test
{
protected:
std::vector<double> coord = {
4.170220047025740423e-02,7.203244934421580703e-02,1.000114374817344942e-01,
4.053881673400336005e+00,4.191945144032948461e-02,6.852195003967595510e-02,
1.130233257263184132e+00,1.467558908171130543e-02,1.092338594768797883e-01,
1.862602113776709242e-02,1.134556072704304919e+00,1.396767474230670159e-01,
5.120445224973151355e+00,8.781174363909455272e-02,2.738759319792616331e-03,
4.067046751017840300e+00,1.141730480236712753e+00,5.586898284457517128e-02,
};
std::vector<int> atype = {
0, 0, 1, 1, 1, 1
};
std::vector<double> box = {
20., 0., 0., 0., 20., 0., 0., 0., 20.
};
int natoms;
std::vector<double> expected_md_f = {
0.509504727653, 0.458424067748, 0.481978258466
}; // max min avg
std::vector<double> expected_md_v = {
0.167004837423,0.00041822790564,0.0804864867641
}; // max min avg

deepmd::DeepPot dp0;
deepmd::DeepPot dp1;
deepmd::DeepPotModelDevi dp_md;

void SetUp() override {
{
std::string file_name = "../../tests/infer/deeppot.pbtxt";
int fd = open(file_name.c_str(), O_RDONLY);
tensorflow::protobuf::io::ZeroCopyInputStream* input = new tensorflow::protobuf::io::FileInputStream(fd);
tensorflow::GraphDef graph_def;
tensorflow::protobuf::TextFormat::Parse(input, &graph_def);
delete input;
std::fstream output("deeppot.pb", std::ios::out | std::ios::trunc | std::ios::binary);
graph_def.SerializeToOstream(&output);
dp0.init("deeppot.pb");
}
{
std::string file_name = "../../tests/infer/deeppot-1.pbtxt";
int fd = open(file_name.c_str(), O_RDONLY);
tensorflow::protobuf::io::ZeroCopyInputStream* input = new tensorflow::protobuf::io::FileInputStream(fd);
tensorflow::GraphDef graph_def;
tensorflow::protobuf::TextFormat::Parse(input, &graph_def);
delete input;
std::fstream output("deeppot-1.pb", std::ios::out | std::ios::trunc | std::ios::binary);
graph_def.SerializeToOstream(&output);
dp1.init("deeppot-1.pb");
}
dp_md.init(std::vector<std::string>({"deeppot.pb", "deeppot-1.pb"}));
};

void TearDown() override {
remove( "deeppot.pb" ) ;
remove( "deeppot-1.pb" ) ;
};
};


TEST_F(TestInferDeepPotModeDevi, attrs)
{
EXPECT_EQ(dp0.cutoff(), dp_md.cutoff());
Expand Down Expand Up @@ -288,3 +351,99 @@ TEST_F(TestInferDeepPotModeDevi, cpu_lmp_list_std)
}
}

inline double mymax(const std::vector<double > & xx)
{
double ret = 0;
for (int ii = 0; ii < xx.size(); ++ii){
if (xx[ii] > ret) {
ret = xx[ii];
}
}
return ret;
};
inline double mymin(const std::vector<double > & xx)
{
double ret = 1e10;
for (int ii = 0; ii < xx.size(); ++ii){
if (xx[ii] < ret) {
ret = xx[ii];
}
}
return ret;
};
inline double myavg(const std::vector<double > & xx)
{
double ret = 0;
for (int ii = 0; ii < xx.size(); ++ii){
ret += xx[ii];
}
return (ret / xx.size());
};
inline double mystd(const std::vector<double > & xx)
{
double ret = 0;
for (int ii = 0; ii < xx.size(); ++ii){
ret += xx[ii] * xx[ii];
}
return sqrt(ret / xx.size());
};

TEST_F(TestInferDeepPotModeDeviPython, cpu_lmp_list_std)
{
float rc = dp_md.cutoff();
int nloc = coord.size() / 3;
std::vector<double> coord_cpy;
std::vector<int> atype_cpy, mapping;
std::vector<std::vector<int > > nlist_data;
_build_nlist(nlist_data, coord_cpy, atype_cpy, mapping,
coord, atype, box, rc);
int nall = coord_cpy.size() / 3;
std::vector<int> ilist(nloc), numneigh(nloc);
std::vector<int*> firstneigh(nloc);
deepmd::InputNlist inlist(nloc, &ilist[0], &numneigh[0], &firstneigh[0]);
convert_nlist(inlist, nlist_data);

int nmodel = 2;
std::vector<double > edir(nmodel), emd;
std::vector<std::vector<double> > fdir_(nmodel), fdir(nmodel), vdir(nmodel), fmd_, fmd(nmodel), vmd;
std::vector<std::vector<double> > aemd(nmodel), aemd_, avmd(nmodel), avmd_;
dp0.compute(edir[0], fdir_[0], vdir[0], coord_cpy, atype_cpy, box, nall-nloc, inlist, 0);
dp1.compute(edir[1], fdir_[1], vdir[1], coord_cpy, atype_cpy, box, nall-nloc, inlist, 0);
dp_md.compute(emd, fmd_, vmd, aemd_, avmd_, coord_cpy, atype_cpy, box, nall-nloc, inlist, 0);
for(int kk = 0; kk < nmodel; ++kk){
_fold_back(fdir[kk], fdir_[kk], mapping, nloc, nall, 3);
_fold_back(fmd[kk], fmd_[kk], mapping, nloc, nall, 3);
_fold_back(avmd[kk], avmd_[kk], mapping, nloc, nall, 9);
aemd[kk].resize(nloc);
for(int ii = 0; ii < nloc; ++ii){
aemd[kk][ii] = aemd_[kk][ii];
}
}

// dp compute std e
std::vector<double > avg_e, std_e;
dp_md.compute_avg(avg_e, aemd);
dp_md.compute_std_e(std_e, avg_e, aemd);

// dp compute std f
std::vector<double > avg_f, std_f;
dp_md.compute_avg(avg_f, fmd);
dp_md.compute_std_f(std_f, avg_f, fmd);
EXPECT_LT(fabs(mymax(std_f) - expected_md_f[0]), 1e-10);
EXPECT_LT(fabs(mymin(std_f) - expected_md_f[1]), 1e-10);
EXPECT_LT(fabs(myavg(std_f) - expected_md_f[2]), 1e-10);

// dp compute std v
// we normalize v by number of atoms
for (int ii = 0; ii < vmd.size(); ++ii){
for(int jj = 0; jj < vmd[ii].size(); ++jj){
vmd[ii][jj] /= double(atype.size());
}
}
std::vector<double > avg_v, std_v;
dp_md.compute_avg(avg_v, vmd);
dp_md.compute_std(std_v, avg_v, vmd, 1);
EXPECT_LT(fabs(mymax(std_v) - expected_md_v[0]), 1e-10);
EXPECT_LT(fabs(mymin(std_v) - expected_md_v[1]), 1e-10);
EXPECT_LT(fabs(mystd(std_v) - expected_md_v[2]), 1e-10);
}