Skip to content

Low E2E throughput performance on SM100 #118

@yewentao256

Description

@yewentao256

Hi DeepGemm team,

vllm-project/vllm#19820

Here I integrate the new version of DeepGemm On SM100

The performance test on kernel looks good, but for the e2e throughput performance, it look quite slow compared to triton.

VLLM_USE_DEEP_GEMM=1 vllm bench throughput  --model Qwen/Qwen3-30B-A3B-FP8 --load-format dummy --input-len 1000 --output-len 100 --trust_remote_code --enforce-eager --enable-expert-parallel --quantization fp8
Throughput: 26.34 requests/s, 28916.28 total tokens/s, 2634.07 output tokens/s
vllm bench throughput  --model Qwen/Qwen3-30B-A3B-FP8 --load-format dummy --input-len 1000 --output-len 100 --trust_remote_code --enforce-eager --enable-expert-parallel --quantization fp8
Throughput: 36.65 requests/s, 40270.79 total tokens/s, 3665.06 output tokens/s


VLLM_USE_DEEP_GEMM=1 vllm bench throughput  --model deepseek-ai/DeepSeek-R1 --load-format dummy --input-len 32 --output-len 128 --trust_remote_code --enforce-eager -tp 8 --enable-expert-parallel  --no-enable-prefix-caching
Throughput: 23.89 requests/s, 3821.89 total tokens/s, 3058.29 output tokens/s
# NO deepgemm
Throughput: 42.59 requests/s, 6811.08 total tokens/s, 5451.01 output tokens/s

Do you know why this would happen and how could we solve it?

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions