-
Notifications
You must be signed in to change notification settings - Fork 13
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
67 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
# SPDX-FileCopyrightText: 2022-present deepset GmbH <info@deepset.ai> | ||
# | ||
# SPDX-License-Identifier: Apache-2.0 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,64 @@ | ||
from collections import defaultdict | ||
|
||
from haystack import Pipeline, component | ||
|
||
|
||
@component | ||
class PipelineWrapper: | ||
def __init__(self, pipeline: Pipeline) -> None: | ||
self._pipeline_instance = pipeline | ||
self.pipeline = pipeline.to_dict() | ||
|
||
# This component has the same inputs as the wrapped pipeline. The wrapped pipeline might have | ||
# a component expecting multiple inputs like this: | ||
# | ||
# { | ||
# 'llm': { | ||
# 'prompt': {'type': ..., 'is_mandatory': True}, | ||
# 'generation_kwargs': {'type': ..., 'is_mandatory': False, 'default_value': None} | ||
# } | ||
# } | ||
# | ||
# In turn, this wrapper components would have nested inputs: | ||
# | ||
# { | ||
# "this_component": { | ||
# 'llm': { | ||
# 'prompt': {'type': ..., 'is_mandatory': True}, | ||
# 'generation_kwargs': {'type': ..., 'is_mandatory': False, 'default_value': None} | ||
# } | ||
# } | ||
# } | ||
# | ||
# This component would be difficult to connect, and to avoid nesting the inputs we flatten the wrapped | ||
# inputs using this naming convention: | ||
# | ||
# <this component input> -> <wrapped_component_name>:<wrapped_input_name> | ||
# | ||
# the inputs of this component would then be: | ||
# { | ||
# 'llm:prompt': {...}, | ||
# 'llm.generation_kwargs': {...} | ||
# } | ||
for component_name, inputs in self._pipeline_instance.inputs().items(): | ||
for input_name, typedef in inputs.items(): | ||
call_args = [self, f"{component_name}:{input_name}", typedef["type"]] | ||
if "default" in typedef: | ||
call_args.append(typedef["default_value"]) | ||
component.set_input_type(*call_args) | ||
|
||
# Same logic for the output | ||
for component_name, outputs in self._pipeline_instance.outputs().items(): | ||
kwargs = {} | ||
for output_name, typedef in outputs.items(): | ||
kwargs[f"{component_name}:{output_name}"] = typedef | ||
component.set_output_types(self, **kwargs) | ||
|
||
def run(self, **kwargs): | ||
# split the inputs | ||
inner_data = defaultdict(dict) | ||
for name, value in kwargs.items(): | ||
component_name, input_name = name.split(":") | ||
inner_data[component_name][input_name] = value | ||
|
||
return self._pipeline_instance.run(data=inner_data) |