Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions inference/huggingface/zero_inference/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -172,4 +172,5 @@ In running example above, only two fully connected layers (fc1 and fc2) and the
## References

- DeepSpeed [ZeRO-Inference](https://www.deepspeed.ai/2022/09/09/zero-inference.html)
- Sheng, Ying et al. [FlexGen: High-Throughput Generative Inference of Large Language Models with a Single GPU](https://arxiv.org/abs/2303.06865)
- Shen, Sheng, et al. "Q-bert: Hessian based ultra low precision quantization of bert." Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 34. No. 05. 2020.
20 changes: 14 additions & 6 deletions inference/huggingface/zero_inference/run_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,7 +26,7 @@
from packaging import version


assert version.parse(deepspeed.__version__) >= version.parse("0.10.2"), "ZeRO-Inference with weight quantization and kv cache offloading is available only in DeepSpeed 0.10.3+, please upgrade DeepSpeed"
assert version.parse(deepspeed.__version__) >= version.parse("0.10.3"), "ZeRO-Inference with weight quantization and kv cache offloading is available only in DeepSpeed 0.10.3+, please upgrade DeepSpeed"

def get_model_config(model_name):
if "175b" in model_name:
Expand Down Expand Up @@ -161,11 +161,19 @@ def run_generation(
return_token_type_ids = True
padding_side = "left" if config.model_type in ["opt"] else "right"

tokenizer = AutoTokenizer.from_pretrained(
model_name,
return_token_type_ids=return_token_type_ids,
padding_side=padding_side
)
if config.model_type == "opt":
tokenizer = AutoTokenizer.from_pretrained(
model_name.replace("175b", "66b"),
return_token_type_ids=return_token_type_ids,
padding_side=padding_side
)
else:
tokenizer = AutoTokenizer.from_pretrained(
model_name,
return_token_type_ids=return_token_type_ids,
padding_side=padding_side
)


tokenizer.pad_token = tokenizer.eos_token

Expand Down