- 兼容性适配:目前登临科技与百度飞桨深度学习框架已完成三级兼容性适配认证,支持当下主流模型应用场景,覆盖了计算机视觉、智能语音、自然语言处理、推荐、图神经网络和强化学习等领域,支持当下主流模型数量100+;
- 一键启动:通过兼容飞桨推理接口,用户通过指定enable_dlnne()接口一键启动模型,并部署在登临GPU上执行;
- 性能评估:开启enable_profile()接口即可评估模型性能;
- 支持拓展:用户可自行准备飞桨预训练inference模型,通过登临GPU实现加速推理;
- 其他特性:有关enable_dlnne()接口的是详细使用方法可参考Paddle-dlNNE;
Models | Evaluate Datasets | Input shape | Acc(paddle) | Acc(Denglin GPU) | Latency(ms)(Denglin GPU,BS=1) | Inference Model |
---|---|---|---|---|---|---|
AlexNet | ImageNet1k | 1x3x224x224 | 0.567 | 0.56644 | 8.388 | inference_model |
DenseNet121 | ImageNet1k | 1x3x224x224 | 0.7566 | 0.75666 | 9.889 | inference_model |
DLA102 | ImageNet1k | 1x3x224x224 | 0.7893 | 0.78926 | 14.285 | inference_model |
DLA34 | ImageNet1k | 1x3x224x224 | 0.7603 | 0.76028 | 5.676 | inference_model |
DLA46_c | ImageNet1k | 1x3x224x224 | 0.6321 | 0.63210 | 2.488 | inference_model |
DLA60 | ImageNet1k | 1x3x224x224 | 0.7610 | 0.76102 | 8.660 | inference_model |
DLA60x_c | ImageNet1k | 1x3x224x224 | 0.6645 | 0.66448 | 2.907 | inference_model |
DPN68 | ImageNet1k | 1x3x224x224 | 0.7678 | 0.76780 | 7.785 | inference_model |
DPN92 | ImageNet1k | 1x3x224x224 | 0.7985 | 0.79852 | 23.162 | inference_model |
ESNet_x0_25 | ImageNet1k | 1x3x224x224 | 0.6248 | 0.62462 | 9.464 | inference_model |
ESNet_x0_5 | ImageNet1k | 1x3x224x224 | 0.6882 | 0.68820 | 9.857 | inference_model |
GoogleNet | ImageNet1k | 1x3x224x224 | 0.7070 | 0.70690 | 4.678 | inference_model |
HarDNet39_ds | ImageNet1k | 1x3x224x224 | 0.7133 | 0.71332 | 2.968 | inference_model |
HarDNet68_ds | ImageNet1k | 1x3x224x224 | 0.7362 | 0.73618 | 4.298 | inference_model |
HRNet_W18_C | ImageNet1k | 1x3x224x224 | 0.7692 | 0.76890 | 18.502 | inference_model |
MixNet_S | ImageNet1k | 1x3x224x224 | 0.7628 | 0.76282 | 10.055 | inference_model |
MobileNetV1 | ImageNet1k | 1x3x224x224 | 0.7099 | 0.71000 | 3.750 | inference_model |
MobileNetV2 | ImageNet1k | 1x3x224x224 | 0.7215 | 0.72156 | 3.251 | inference_model |
MobileNetV3_small_x0_35_ssld | ImageNet1k | 1x3x224x224 | 0.5555 | 0.55606 | 2.271 | inference_model |
MobileNetV3_small_x0_5 | ImageNet1k | 1x3x224x224 | 0.5921 | 0.59192 | 2.484 | inference_model |
MobileNetV3_small_x0_75 | ImageNet1k | 1x3x224x224 | 0.6602 | 0.66050 | 3.150 | inference_model |
MobileNetV3_small_x1_25 | ImageNet1k | 1x3x224x224 | 0.7067 | 0.70654 | 4.297 | inference_model |
PPLCNet_x0_25 | ImageNet1k | 1x3x224x224 | 0.5186 | 0.51812 | 2.287 | inference_model |
PPLCNet_x0_35 | ImageNet1k | 1x3x224x224 | 0.5809 | 0.58088 | 2.747 | inference_model |
PPLCNet_x0_5 | ImageNet1k | 1x3x224x224 | 0.6314 | 0.63172 | 2.921 | inference_model |
PPLCNet_x1_0 | ImageNet1k | 1x3x224x224 | 0.7132 | 0.71312 | 4.591 | inference_model |
RedNet26 | ImageNet1k | 1x3x224x224 | 0.7595 | 0.75950 | 219.600 | inference_model |
RedNet38 | ImageNet1k | 1x3x224x224 | 0.7747 | 0.77470 | 333.226 | inference_model |
Res2Net50_14w_8s | ImageNet1k | 1x3x224x224 | 0.7946 | 0.79462 | 11.200 | inference_model |
ResNet101_vd | ImageNet1k | 1x3x224x224 | 0.8017 | 0.80178 | 12.615 | inference_model |
ResNet18 | ImageNet1k | 1x3x224x224 | 0.7098 | 0.70988 | 3.411 | inference_model |
ResNet50 | ImageNet1k | 1x3x224x224 | 0.7650 | 0.76502 | 7.597 | inference_model |
ResNeXt50_32x4d | ImageNet1k | 1x3x224x224 | 0.7775 | 0.77754 | 9.849 | inference_model |
ReXNet_1_0 | ImageNet1k | 1x3x224x224 | 0.7746 | 0.77452 | 23.933 | inference_model |
ReXNet_1_3 | ImageNet1k | 1x3x224x224 | 0.7913 | 0.79134 | 28.345 | inference_model |
ReXNet_1_5 | ImageNet1k | 1x3x224x224 | 0.8006 | 0.80072 | 30.896 | inference_model |
ReXNet_2_0 | ImageNet1k | 1x3x224x224 | 0.8122 | 0.81242 | 39.879 | inference_model |
ReXNet_3_0 | ImageNet1k | 1x3x224x224 | 0.8209 | 0.82086 | 60.846 | inference_model |
SE_ResNet18_Vd | ImageNet1k | 1x3x224x224 | 0.7333 | 0.73332 | 4.402 | inference_model |
SE_ResNet34_vd | ImageNet1k | 1x3x224x224 | 0.7651 | 0.76518 | 7.116 | inference_model |
SE_ResNet50_vd | ImageNet1k | 1x3x224x224 | 0.7952 | 0.79524 | 15.831 | inference_model |
ShuffleNetV2_x0_25 | ImageNet1k | 1x3x224x224 | 0.4990 | 0.49904 | 12.256 | inference_model |
ShuffleNetV2_x1_5 | ImageNet1k | 1x3x224x224 | 0.7163 | 0.71636 | 14.337 | inference_model |
SqueezeNet1_1 | ImageNet1k | 1x3x224x224 | 0.601 | 0.60076 | 2.295 | inference_model |
VGG11 | ImageNet1k | 1x3x224x224 | 0.693 | 0.69294 | 21.421 | inference_model |
VGG13 | ImageNet1k | 1x3x224x224 | 0.700 | 0.69994 | 24.873 | inference_model |
VGG19 | ImageNet1k | 1x3x224x224 | 0.726 | 0.72556 | 31.127 | inference_model |
Models | Evaluate Datasets | Input shape | Hmean(paddle) | Hmean(Denglin GPU) | Latency(ms)(Denglin GPU,BS=1) | Inference Model |
---|---|---|---|---|---|---|
det_mv3_db_v2.0 | ICDAR2015 | 1x3x736x1280 | 0.7512 | 0.75092 | 96.365 | inference_model |
det_r50_vd_db_v2.0 | ICDAR2015 | 1x3x736x1280 | 0.8238 | 0.82368 | 318.926 | inference_model |
det_mv3_east_v2.0 | ICDAR2015 | 1x3x704x1280 | 0.7865 | 0.78680 | 74.671 | inference_model |
det_r50_vd_east_v2.0 | ICDAR2015 | 1x3x704x1280 | 0.8488 | 0.84903 | 408.758 | inference_model |
det_r50_vd_sast_icdar15_v2.0 | ICDAR2015 | 1x3x896x1536 | 0.8742 | 0.87415 | 1772.236 | inference_model |
det_mv3_pse_v2.0 | ICDAR2015 | 1x3x736x1312 | 0.7589 | 0.75894 | 304.274 | inference_model |
det_r50_vd_pse_v2.0 | ICDAR2015 | 1x3x736x1312 | 0.8255 | 0.82538 | 674.206 | inference_model |
rec_svtr_tiny_none_ctc_en | IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE | 1x3x64x256 | 0.9013(Avg_10,acc) | 0.90105 (acc) | 6.564 | inference_model |
Models | Evaluate Datasets | Input shape | mAP(paddle) | mAP(Denglin GPU) | Latency(ms)(Denglin GPU,BS=1) | Inference Model |
---|---|---|---|---|---|---|
picodet_lcnet_1_5x_416_coco | coco | 1x3x416x416 | 0.363 | 0.363 | 133.012 | inference_model |
picodet_s_320_coco | coco | 1x3x320x320 | 0.271 | 0.271 | 66.497 | inference_model |
ppyolo_mbv3_large_coco | coco | 1x3x320x320 | 0.232 | 0.240 | 27.512 | inference_model |
ppyolo_r50vd_dcn_1x_coco | coco | 1x3x608x608 | 0.448 | 0.447 | 444.563 | inference_model |
ppyolo_tiny_650e_coco | coco | 1x3x320x320 | 0.206 | 0.207 | 29.661 | inference_model |
ppyoloe_crn_s_300e_coco | coco | 1x3x640x640 | 0.430 | 0.430 | 115.896 | inference_model |
ppyolov2_r50vd_dcn_365e_ | coco | 1x3x640x640 | 0.491 | 0.491 | 630.109 | inference_model |
ttfnet_darknet53_1x_coco | coco | 1x3x512x512 | 0.335 | 0.336 | 413.021 | inference_model |
yolov3_darknet53_270e_coco | coco | 1x3x608x608 | 0.391 | 0.391 | 279.647 | inference_model |
yolov3_mobilenet_v1_270e_coco | coco | 1x3x608x608 | 0.294 | 0.294 | 136.460 | inference_model |
yolox_s_300e_coco | coco | 1x3x640x640 | 0.404 | 0.404 | 142.276 | inference_model |
Models | Evaluate Datasets | Input shape | mIoU(paddle) | mIoU(Denglin GPU) | Latency(ms)(Denglin GPU,BS=1) | Inference Model |
---|---|---|---|---|---|---|
BiSeNetV1 | Cityscapes | 1x3x1024x2048 | 0.7519 | 0.75191 | 23283.000 | inference_model |
BiSeNetv2 | Cityscapes | 1x3x1024x2048 | 0.7319 | 0.73169 | 594.874 | inference_model |
CCNet | Cityscapes | 1x3x1025x2049 | 0.8095 | 0.80951 | 6435.860 | inference_model |
DDRNet_23(DDRNet) | Cityscapes | 1x3x1024x2048 | 0.7985 | 0.79847 | 729.794 | inference_model |
DeepLabv3p_resnet50_cityscapes | Cityscapes | 1x3x1024x2048 | 0.8036 | 0.8036 | 3712.280 | inference_model |
ENet | Cityscapes | 1x3x1024x2048 | 0.6742 | 0.67420 | 801.838 | inference_model |
FCN_HRNet_W18 | 飞桨内部人像数据集 | 1x3x1024x2048 | 0.787 | 0.78969 | 1580.298 | inference_model |
GloRe | Cityscapes | 1x3x1024x2048 | 0.7826 | 0.78256 | 31732.400 | inference_model |
HRNetW48Contrast | Cityscapes | 1x3x1024x2048 | 0.8230 | 0.82398 | 3544.080 | inference_model |
OCRNet_HRNetW18 | Cityscapes | 1x3x1024x2048 | 0.8067 | 0.80702 | 3801.400 | inference_model |
PFPNNet | Cityscapes | 1x3x1024x2048 | 0.7907 | 0.79072 | 28974.200 | inference_model |
STDC_STDC1 | Cityscapes | 1x3x1024x2048 | 0.7474 | 0.74739 | 904.822 | inference_model |
UPERNet | ADE20K | 1x3x1024x2048 | 0.7958 | 0.79581 | 8477.040 | inference_model |
Models | Evaluate Datasets | Sequence Length | Acc(paddle) | Acc(Denglin GPU) | Latency(ms)(Denglin GPU,BS=1) | Inference Model |
---|---|---|---|---|---|---|
BERT-Base | SST-2 | 128 | 0.92660 | 0.92661 | 20.455 | inference_model |
Bi-LSTM | ChnSentiCorp | 599 | 0.8983 | 0.89833 | 25.231 | inference_model |
ConvBert | SST-2 | 128 | 0.9139 | 0.91399 | 102.281 | inference_model |
ELECTRA | SST-2 | 128 | 0.9185 | 0.91857 | 4.601 | inference_model |
LayoutLM | FUNSD | 512 | F1: 0.7913 | F1: 0.79116 | 172.491 | inference_model |
MiniLMv2 | AFQMC | 128 | 0.7138 | 0.71362 | 9.536 | inference_model |
seq2seq | IWSLT15 en-vi | 128 | BLEU: 0.2433 | BLEU: 0.24340 | 782.965 | inference_model |
TextCNN | ChnSentiCorp | 599 | 0.9107 | 0.91000 | 1.273 | inference_model |
TinyBert | SST-2 | 128 | 0.9300 | 0.93005 | 20.583 | inference_model |
Models | Evaluate Datasets | Metrics(paddle) | Metrics(Denglin GPU) | Latency(ms)(Denglin GPU,BS=1) | Inference Model |
---|---|---|---|---|---|
DSSM | BQ | 0.93(正序率) | 0.92875(正序率) | 2.805 | inference_model |
match-pyramid | Letor07 | 0.39(map) | 0.39296map) | 0.895 | inference_model |
NCF | movielens | 0.58(HR@10) 、0.33(NDCG@10) | 0.58543(HR@10) 、 0.33538(NDCG@10) | 0.699 | inference_model |
DLRM | criteo | Auc:0.79 + | 0.80120 | 6.016 | inference_model |
DeepFM | Criteo | Auc:0.78 | 0.794357 | 1.357 | inference_model |
Models | Evaluate Datasets | Metrics | Reward(CPU) | Reward(Denglin GPU) | Latency(ms)(Denglin GPU,BS=1) | Inference Model |
---|---|---|---|---|---|---|
DQN_variant | Atari games | Reward | 3.66667 | 3.66667 | 7.171 | inference_model |
PPO Atari | games | Reward | -21.0 | -21.0 | 1.587 | inference_model |
DQN | CartPole-v0 | Reward | 19.0 | 19.0 | 0.350 | inference_model |
MADDPG | gym | Reward | -75.19758 | -75.19758 | 0.768 | inference_model |
Models | Evaluate Datasets | Acc(paddle) | Acc(Denglin GPU) | Acc(CPU) | Latency(ms)(Denglin GPU,BS=1) | Inference Model |
---|---|---|---|---|---|---|
gin | MUTAG | -- | 0.78947 | 0.78947 | 10.529 | inference_model |
GraphSage | -- | 0.74706 | 0.74706 | 581.025 | inference_model | |
gat | cora | 0.83 | 0.83333 | -- | 103.456 | inference_model |
gcn | CORA | 0.81 | 0.81000 | -- | 109.458 | inference_model |
Models | Evaluate Datasets | Metrics | Acc(paddle) | Acc(Denglin GPU) | Acc(CPU) | Latency(ms)(Denglin GPU,BS=1) | Inference Model |
---|---|---|---|---|---|---|---|
hifigan | AISHELL-3 | mel_loss | 0.1068 | -- | 0.10699 | 104.712 | inference_model |
Tacotron2 | CSMSC | eval/loss | -- | 1.928438 | 1.928438 | -- | inference_model |
Speedyspeech | CSMSC | eval/loss | -- | 0.879209 | 0.879209 | 146.011 | inference_model |
python3 tools/deploy/predict.py \
--model_file ${MODEL_PATH}/MobileNetV3.pdmodel \
--params_file ${MODEL_PATH}/MobileNetV3.pdiparams \
--input_data ${INPUT_DATA}