This project demonstrates how to predict stock prices using linear regression. The dataset used is for PAYTM stocks from 18th November 2022 to 18th November 2023.
stock-price-prediction-using-linear-regression.ipynb: Jupyter notebook with the code for data analysis and model training.Quote-Equity-PAYTM-EQ-18-11-2022-to-18-11-2023.csv: The dataset used for this project.LICENSE.txt: License information.stock_price_prediction_using_linear_regression.py: Python script for stock price prediction.
- 
Clone the repository:
git clone https://github.com/devdattatalele/Stock-price-prediction.git
 - 
Navigate to the project directory:
cd Stock-price-prediction - 
Install the required packages:
pip install -r requirements.txt
 
- 
Open the Jupyter notebook
stock-price-prediction-using-linear-regression.ipynbto explore the data and model training process. - 
Alternatively, you can run the Python script
stock_price_prediction_using_linear_regression.py:python stock_price_prediction_using_linear_regression.py
 
The dataset Quote-Equity-PAYTM-EQ-18-11-2022-to-18-11-2023.csv contains the following columns:
- Date
 - Series
 - Open
 - High
 - Low
 - Previous Close
 - Last Traded Price (LTP)
 - Close
 - VWAP
 - 52 Week High
 - 52 Week Low
 - Volume
 - Value
 - Number of Trades
 
The project includes:
- Data analysis and visualization
 - Training a linear regression model to predict stock prices
 - Evaluation of the model's performance
 
This project is licensed under the MIT License. See the LICENSE.txt file for more details.
Created by Devdatta Talele.
- Email: taleledevdatta@gmail.com
 - LinkedIn: linkedin.com/devdatta-talele