Skip to content

start geopandas extension #728

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 32 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
32 commits
Select commit Hold shift + click to select a range
f4cd78b
add geopandas explore accessor
Jan 7, 2025
52ddf09
add explore notebook
Jan 7, 2025
89f3097
update notebook w/ versions
Jan 7, 2025
d29e3c3
move conditional imports, rename classification_kwds
Jan 7, 2025
3bbd198
warn on scheme
Jan 10, 2025
d1bbfef
rm mapclassify from optional deps
Jan 10, 2025
0ab2680
fix classifier check; expose highlight
Jan 14, 2025
f8e5092
add type hints; use google docstrings; allow vmin and vmax
Feb 5, 2025
79cfbba
add mapclassify back to optional deps
Feb 5, 2025
9895c03
Merge branch 'main' into explore
kylebarron Feb 5, 2025
218c3c1
Remove mapclassify extra
kylebarron Feb 5, 2025
f8487b4
lint
kylebarron Feb 5, 2025
4ae5f0c
errant import; fix docstrings
Feb 5, 2025
33f6957
precommit
Feb 5, 2025
90a49f5
Update lonboard/geopandas.py
knaaptime Feb 12, 2025
de92d47
Merge branch 'main' of github.com:developmentseed/lonboard into explore
Feb 12, 2025
ea5eb3b
update from code review
Feb 12, 2025
69e3254
skip bool check because its a kwarg in the private function
Feb 12, 2025
8f915cf
lint notebook
Feb 12, 2025
a6cc193
underscore cell
Feb 12, 2025
3f22c25
Merge branch 'main' into explore
knaaptime Feb 24, 2025
e380c11
Merge branch 'main' into explore
knaaptime Mar 5, 2025
51ecfa0
Merge branch 'main' into explore
knaaptime Mar 14, 2025
8d4f02c
Merge branch 'main' of github.com:developmentseed/lonboard into explore
Mar 14, 2025
cf25ca3
use dict fromkeys
Mar 14, 2025
36b754f
Merge branch 'explore' of github.com:knaaptime/lonboard into explore
Mar 14, 2025
2624f97
Merge branch 'main' into explore
knaaptime Mar 28, 2025
ad60f81
manual ruff
Mar 28, 2025
79bb722
Merge branch 'main' of github.com:developmentseed/lonboard into explore
Mar 28, 2025
2ced17e
Merge branch 'explore' of github.com:knaaptime/lonboard into explore
Mar 28, 2025
f23a3e3
revert notebook
Mar 28, 2025
3e2b739
Merge branch 'main' into explore
knaaptime Apr 1, 2025
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3,720 changes: 3,720 additions & 0 deletions examples/explore.ipynb

Large diffs are not rendered by default.

340 changes: 340 additions & 0 deletions lonboard/geopandas.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,340 @@
from __future__ import annotations

from typing import Any

import geopandas as gpd
import numpy as np
import pandas as pd

from . import Map, basemap, viz
from .colormap import apply_categorical_cmap, apply_continuous_cmap

__all__ = ["LonboardAccessor"]

QUERY_NAME_TRANSLATION = str.maketrans(dict.fromkeys("., -_/", ""))


@pd.api.extensions.register_dataframe_accessor("lb")
class LonboardAccessor:
"""Geopandas Extension class to provide the `explore` method."""

def __init__(self, pandas_obj) -> None: # noqa: ANN001, D107
self._validate(pandas_obj)
self._obj = pandas_obj

@staticmethod
def _validate(obj) -> None: # noqa: ANN001
if not isinstance(obj, gpd.GeoDataFrame):
raise TypeError("must be a geodataframe")

def explore( # noqa: PLR0913
self,
column: str | None = None,
cmap: str | None = None,
scheme: str | None = None,
k: int | None = 6,
categorical: bool = False, # noqa: FBT001, FBT002
elevation: str | np.ndarray = None,
elevation_scale: float | None = 1,
alpha: float | None = 1,
layer_kwargs: dict[str, Any] | None = None,
map_kwargs: dict[str, Any] | None = None,
classification_kwds: dict[str, Any] | None = None,
nan_color: list[int] | np.ndarray[int] | None = None,
color: str | None = None,
vmin: float | None = None,
vmax: float | None = None,
wireframe: bool = False, # noqa: FBT001, FBT002
tiles: str | None = None,
highlight: bool = False, # noqa: FBT001, FBT002
m: Map | None = None,
) -> Map:
"""Explore a dataframe using lonboard and deckgl.

Keyword Args:
column : Name of column on dataframe to visualize on map.
cmap : Name of matplotlib colormap to use.
scheme : Name of a classification scheme defined by mapclassify.Classifier.
k : Number of classes to generate. Defaults to 6.
categorical : Whether the data should be treated as categorical or
continuous.
elevation : Name of column on the dataframe used to extrude each geometry or
an array-like in the same order as observations. Defaults to None.
elevation_scale : Constant scaler multiplied by elevation value.
alpha : Alpha (opacity) parameter in the range (0,1) passed to
mapclassify.util.get_color_array.
layer_kwargs : Additional keyword arguments passed to lonboard.viz layer
arguments (either polygon_kwargs, scatterplot_kwargs, or path_kwargs,
depending on input geometry type).
map_kwargs : Additional keyword arguments passed to lonboard.viz map_kwargs.
classification_kwds : Additional keyword arguments passed to
`mapclassify.classify`.
nan_color : Color used to shade NaN observations formatted as an RGBA list.
Defaults to [255, 255, 255, 255]. If no alpha channel is passed it is
assumed to be 255.
color : single or array of colors passed to Layer.get_fill_color
or a lonboard.basemap object, or a string to a maplibre style basemap.
vmin : Minimum value for color mapping.
vmax : Maximum value for color mapping.
wireframe : Whether to use wireframe styling in deckgl.
tiles : Either a known string {"CartoDB Positron",
"CartoDB Positron No Label", "CartoDB Darkmatter",
"CartoDB Darkmatter No Label", "CartoDB Voyager",
"CartoDB Voyager No Label"}
highlight : Whether to highlight each feature on mouseover (passed to
lonboard.Layer's auto_highlight). Defaults to False.
m: An existing Map object to plot onto.

Returns:
lonboard.Map
a lonboard map with geodataframe included as a Layer object.

"""
return _dexplore(
self._obj,
column=column,
cmap=cmap,
scheme=scheme,
k=k,
categorical=categorical,
elevation=elevation,
elevation_scale=elevation_scale,
alpha=alpha,
layer_kwargs=layer_kwargs,
map_kwargs=map_kwargs,
classification_kwds=classification_kwds,
nan_color=nan_color,
color=color,
vmin=vmin,
vmax=vmax,
wireframe=wireframe,
tiles=tiles,
highlight=highlight,
m=m,
)


def _dexplore( # noqa: C901, PLR0912, PLR0913, PLR0915
gdf, # noqa: ANN001
*,
column, # noqa: ANN001
cmap, # noqa: ANN001
scheme, # noqa: ANN001
k, # noqa: ANN001
categorical, # noqa: ANN001
elevation, # noqa: ANN001
elevation_scale, # noqa: ANN001
alpha, # noqa: ANN001
layer_kwargs, # noqa: ANN001
map_kwargs, # noqa: ANN001
classification_kwds, # noqa: ANN001
nan_color, # noqa: ANN001
color, # noqa: ANN001
vmin, # noqa: ANN001
vmax, # noqa: ANN001
wireframe, # noqa: ANN001
tiles, # noqa: ANN001
highlight, # noqa: ANN001
m, # noqa: ANN001
) -> Map:
"""Explore a dataframe using lonboard and deckgl.

See the public docstring for detailed parameter information

Returns
-------
lonboard.Map
a lonboard map with geodataframe included as a Layer object.

"""
if map_kwargs is None:
map_kwargs = {}
if classification_kwds is None:
classification_kwds = {}
if layer_kwargs is None:
layer_kwargs = {}
if isinstance(elevation, str):
if elevation in gdf.columns:
elevation = gdf[elevation]
else:
raise ValueError(
f"the designated height column {elevation} is not in the dataframe",
)
if not pd.api.types.is_numeric_dtype(elevation):
raise ValueError("elevation must be a numeric data type")
if elevation is not None:
layer_kwargs["extruded"] = True
if nan_color is None:
nan_color = [255, 255, 255, 255]
if not pd.api.types.is_list_like(nan_color):
raise ValueError("nan_color must be an iterable of 3 or 4 values")
if len(nan_color) != 4:
if len(nan_color) == 3:
nan_color = np.append(nan_color, [255])
else:
raise ValueError("nan_color must be an iterable of 3 or 4 values")

# only polygons have z
if ["Polygon", "MultiPolygon"] in gdf.geometry.geom_type.unique():
layer_kwargs["get_elevation"] = elevation
layer_kwargs["elevation_scale"] = elevation_scale
layer_kwargs["wireframe"] = wireframe
layer_kwargs["auto_highlight"] = highlight

line = False # set color of lines, not fill_color
if ["LineString", "MultiLineString"] in gdf.geometry.geom_type.unique():
line = True
if color:
if line:
layer_kwargs["get_color"] = color
else:
layer_kwargs["get_fill_color"] = color
if column is not None:
try:
from matplotlib import colormaps
except ImportError as e:
raise ImportError(
"you must have matplotlib installed to style by a column",
) from e

if column not in gdf.columns:
raise ValueError(f"the designated column {column} is not in the dataframe")
if gdf[column].dtype in ["O", "category"]:
categorical = True
if cmap is not None and cmap not in colormaps:
raise ValueError(
f"`cmap` must be one of {list(colormaps.keys())} but {cmap} was passed",
)
if cmap is None:
cmap = "tab20" if categorical else "viridis"
if categorical:
color_array = _get_categorical_cmap(gdf[column], cmap, nan_color, alpha)
elif scheme is None:
if vmin is None:
vmin = np.nanmin(gdf[column])
if vmax is None:
vmax = np.nanmax(gdf[column])
# minmax scale the column first, matplotlib needs 0-1
transformed = (gdf[column] - vmin) / (vmax - vmin)
color_array = apply_continuous_cmap(
values=transformed,
cmap=colormaps[cmap],
alpha=alpha,
)
else:
try:
from mapclassify._classify_API import _classifiers
from mapclassify.util import get_color_array

_klasses = list(_classifiers.keys())
_klasses.append("userdefined")
except ImportError as e:
raise ImportError(
"you must have the `mapclassify` package installed to use the "
"`scheme` keyword",
) from e
if scheme.replace("_", "") not in _klasses:
raise ValueError(
"the classification scheme must be a valid mapclassify"
f"classifier in {_klasses},"
f"but {scheme} was passed instead",
)
if k is not None and "k" in classification_kwds:
# k passed directly takes precedence
classification_kwds.pop("k")
color_array = get_color_array(
gdf[column],
scheme=scheme,
k=k,
cmap=cmap,
alpha=alpha,
nan_color=nan_color,
**classification_kwds,
)

if line:
layer_kwargs["get_color"] = color_array

else:
layer_kwargs["get_fill_color"] = color_array
if tiles:
map_kwargs["basemap_style"] = _query_name(tiles)
new_m = viz(
gdf,
polygon_kwargs=layer_kwargs,
scatterplot_kwargs=layer_kwargs,
path_kwargs=layer_kwargs,
map_kwargs=map_kwargs,
)
if m is not None:
new_m = m.add_layer(new_m)

return new_m


def _get_categorical_cmap(categories, cmap, nan_color, alpha): # noqa: ANN001, ANN202
try:
from matplotlib import colormaps
except ImportError as e:
raise ImportError(
"this function requires the `lonboard` package to be installed",
) from e

cat_codes = pd.Series(pd.Categorical(categories).codes, dtype="category")
# nans are encoded as -1 OR largest category depending on input type
# re-encode to always be last category
cat_codes = cat_codes.cat.rename_categories({-1: len(cat_codes.unique()) - 1})
unique_cats = categories.dropna().unique()
n_cats = len(unique_cats)
colors = colormaps[cmap].resampled(n_cats)(list(range(n_cats)), alpha, bytes=True)
colors = np.vstack([colors, nan_color])
temp_cmap = dict(zip(range(n_cats + 1), colors))
return apply_categorical_cmap(cat_codes, temp_cmap)

def _query_name(name: str) -> basemap:
"""Return basemap URL based on the name query (mimicking behavior from xyzservices).

Returns a matching basemap from name contains the same letters in the same
order as the provider's name irrespective of the letter case, spaces, dashes
and other characters. See examples for details.

Parameters
----------
name : str
Name of the tile provider. Formatting does not matter.

Returns
-------
match: lonboard.basemap

Examples
--------
>>> import xyzservices.providers as xyz

All these queries return the same ``CartoDB.Positron`` TileProvider:

>>> xyz._query_name("CartoDB Positron")
>>> xyz._query_name("cartodbpositron")
>>> xyz._query_name("cartodb-positron")
>>> xyz._query_name("carto db/positron")
>>> xyz._query_name("CARTO_DB_POSITRON")
>>> xyz._query_name("CartoDB.Positron")

"""
providers = {
"CartoDB Positron": basemap.CartoBasemap.Positron,
"CartoDB Positron No Label": basemap.CartoBasemap.PositronNoLabels,
"CartoDB Darkmatter": basemap.CartoBasemap.DarkMatter,
"CartoDB Darkmatter No Label": basemap.CartoBasemap.DarkMatterNoLabels,
"CartoDB Voyager": basemap.CartoBasemap.Voyager,
"CartoDB Voyager No Label": basemap.CartoBasemap.VoyagerNoLabels,
}
xyz_flat_lower = {
k.translate(QUERY_NAME_TRANSLATION).lower(): v
for k, v in providers.items()
}
name_clean = name.translate(QUERY_NAME_TRANSLATION).lower()
if name_clean in xyz_flat_lower:
return xyz_flat_lower[name_clean]

raise ValueError(f"No matching provider found for the query '{name}'.")
1 change: 1 addition & 0 deletions pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -78,6 +78,7 @@ dev = [
"geoarrow-rust-core>=0.3.0",
"geodatasets>=2024.8.0",
"jupyterlab>=4.3.3",
"mapclassify>=2.8.1",
"matplotlib>=3.7.5",
"movingpandas>=0.20.0",
"palettable>=3.3.3",
Expand Down
Loading