Skip to content

Commit

Permalink
Merge pull request #2 from devreal/mra-device-tensorslice
Browse files Browse the repository at this point in the history
Add TensorSlice implementation
  • Loading branch information
nileshchat authored Jul 29, 2024
2 parents e020c3f + a1ca087 commit 0ef8577
Show file tree
Hide file tree
Showing 19 changed files with 1,915 additions and 57 deletions.
6 changes: 6 additions & 0 deletions examples/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -58,13 +58,19 @@ if (TARGET tiledarray)
endif(TTG_HAVE_HIP)
endif()

add_ttg_executable(tensortest madness/mra-device/tests/tensor_test.cc)
#if (TTG_HAVE_CUDA)
add_ttg_executable(mradevice-cuda madness/mra-device/mrattg-device.cc madness/mra-device/gl.cc RUNTIMES "parsec")
#endif (TTG_HAVE_CUDA)

if (TARGET MADworld)
add_ttg_executable(madness-1d madness/madness-1d/madness-1d.cc RUNTIMES "mad")
if (TARGET blaspp) #(CBLAS_FOUND AND MKL_FOUND)
add_ttg_executable(mrattg madness/mrattg.cc mragl.cc mratwoscale.cc mradomain.h mrafunctiondata.h mrafunctionfunctor.h mrafunctionnode.h mragl.h mrahash.h mrakey.h mramisc.h mramxm.h mrarange.h mrasimpletensor.h mratwoscale.h mratypes.h LINK_LIBRARIES blaspp MADworld)

add_ttg_executable(mrattg-streaming madness/mrattg_streaming.cc mragl.cc mratwoscale.cc mradomain.h mrafunctiondata.h mrafunctionfunctor.h mrafunctionnode.h mragl.h mrahash.h mrakey.h mramisc.h mramxm.h mrarange.h mrasimpletensor.h mratwoscale.h mratypes.h LINK_LIBRARIES blaspp MADworld)
endif ()

endif (TARGET MADworld)

add_ttg_executable(wavefront-wf wavefront/wavefront-wf.cc SINGLERANKONLY)
Expand Down
149 changes: 149 additions & 0 deletions examples/madness/mra-device/functiondata.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,149 @@
#ifndef MADFUNCTIONDATA_H_INCL
#define MADFUNCTIONDATA_H_INCL

#include "../../mratypes.h"
#include "../../mradomain.h"
#include "../../mratwoscale.h"
#include "tensor.h"
#include "gl.h"

namespace mra {

/// Convenient co-location of frequently used data
template <typename T, Dimension NDIM>
class FunctionData {
std::size_t K;
Tensor<T,2> phi; // phi(mu,i) = phi(x[mu],i) --- value of scaling functions at quadrature points on level 0
Tensor<T,2> phibar; // phibar(mu,i) = w[mu]*phi(x[mu],i)
Tensor<T,2> HG; // Two scale filter applied from left to scaling function coeffs
Tensor<T,2> HGT; // Two scale filter applied from right to scaling function coeffs
Tensor<T,2> rm, r0, rp; // blocks of the ABGV central derivative operator
std::unique_ptr<T[]> x, w; // Quadrature points and weights on level 0

void make_abgv_diff_operator() {
double iphase = 1.0;
auto r0_view = r0.current_view();
auto rm_view = rm.current_view();
auto rp_view = rp.current_view();
for (auto i: range(K)) {
double jphase = 1.0;
for (auto j : range(K)) {
double gammaij = std::sqrt(double((2*i+1)*(2*j+1)));
double Kij;
if (((i-j)>0) && (((i-j)%2)==1))
Kij = 2.0;
else
Kij = 0.0;

r0_view(i,j) = T(0.5*(1.0 - iphase*jphase - 2.0*Kij)*gammaij);
rm_view(i,j) = T(0.5*jphase*gammaij);
rp_view(i,j) = T(-0.5*iphase*gammaij);
}
}
}

/// Set phi(mu,i) to be phi(x[mu],i)
void make_phi() {
/* retrieve x, w from constant memory */
const T *x, *w;
detail::GLget(&x, &w, K);
T* p = new T[K];
auto phi_view = phi.current_view();
for (size_t mu : range(K)) {
detail::legendre_scaling_functions(x[mu], K, &p[0]);
for (size_t i : range(K)) {
phi_view(mu,i) = p[i];
}
}
delete[] p;
}

/// Set phibar(mu,i) to be w[mu]*phi(x[mu],i)
void make_phibar() {
/* retrieve x, w from constant memory */
const T *x, *w;
detail::GLget(&x, &w, K);
T *p = new T[K];
auto phibar_view = phibar.current_view();
for (size_t mu : range(K)) {
detail::legendre_scaling_functions(x[mu], K, &p[0]);
for (size_t i : range(K)) {
phibar_view(mu,i) = w[mu]*p[i];
}
}
delete[] p;
// FixedTensor<T,K,2> phi, r;
// make_phi<T,K>(phi);
// mTxmq(K, K, K, r.ptr(), phi.ptr(), phibar.ptr());
// std::cout << r << std::endl; // should be identify matrix
}

public:

FunctionData(std::size_t K)
: K(K)
, phi(K, K)
, phibar(K, K)
, HG(2*K, 2*K)
, HGT(2*K, 2*K)
, rm(K, K)
, r0(K, K)
, rp(K, K)
{
make_phi();
make_phibar();
twoscale_get(K, HG.data());
auto HG_view = HG.current_view();
auto HGT_view = HGT.current_view();
for (size_t i : range(2*K)) {
for (size_t j : range(2*K)) {
HGT_view(j,i) = HG_view(i,j);
}
}
make_abgv_diff_operator();
}

const auto& get_phi() const {return phi;}
const auto& get_phibar() const {return phibar;}
const auto& get_hg() const {return HG;}
const auto& get_hgT() const {return HGT;}
const auto& get_rm() const {return rm;}
const auto& get_r0() const {return r0;}
const auto& get_rp() const {return rp;}

/// Set X(d,mu) to be the mu'th quadrature point in dimension d for the box described by key
void make_quadrature_pts(const Key<NDIM>& key, TensorView<T,2>& X) {
const Level n = key.level();
const std::array<Translation,NDIM>& l = key.translation();
const T h = std::pow(T(0.5),T(n));
/* retrieve x[] from constant memory */
const T *x, *w;
detail::GLget(&x, &w, K);
#ifdef __CUDA_ARCH__
if (blockIdx.z == 0) {
for (int d = blockIdx.y; d < x.Dim(0); d += blockDim.y) {
T lo, hi; std::tie(lo,hi) = Domain<NDIM>::get(d);
T width = h*Domain<NDIM>::get_width(d);
for (int i = blockIdx.x; i < X.dim(1); i += blockDim.y) {
X(d,i) = lo + width*(l[d] + x[i]);
}
}
}
/* wait for all to complete */
__syncthreads();
#else // __CUDA_ARCH__
for (Dimension d : range(NDIM)) {
T lo, hi; std::tie(lo,hi) = Domain<NDIM>::get(d);
T width = h*Domain<NDIM>::get_width(d);
for (size_t i : X.dim(1)) {
X(d,i) = lo + width*(l[d] + x[i]);
}
}
#endif // __CUDA_ARCH__
}
};

}


#endif
114 changes: 114 additions & 0 deletions examples/madness/mra-device/functionfunctor.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,114 @@
#ifndef MAD_FUNCTION_FUNCTOR_H_INCL
#define MAD_FUNCTION_FUNCTOR_H_INCL

#include "tensor.h"

#include "../../mratypes.h"

namespace mra {


/// Function functor is going away ... don't use!
/// \code
///template <typename T, Dimension NDIM>
/// class FunctionFunctor {
///public:
/// T operator()(const Coordinate<T,NDIM>& r) const;
/// template <size_t K> void operator()(const SimpleTensor<T,NDIM,K>& x, FixedTensor<T,K,NDIM>& values) const;
/// Level initial_level() const;
/// bool is_negligible(const std::pair<Coordinate<T,NDIM>,Coordinate<T,NDIM>>& box, T thresh) const;
/// special point interface to be added
/// }
/// \endcode

/// Adapts a simple callable to the API needed for evaluation --- implement your own for full vectorization
template <typename T, Dimension NDIM>
class FunctionFunctor {
std::function<T(const Coordinate<T,NDIM>&)> f;

public:
static const Level default_initial_level = 3; //< needs to become user configurable

template <typename functionT>
FunctionFunctor(functionT f) : f(f) {}

/// Evaluate at a single point
T operator()(const Coordinate<T,NDIM>& r) const {return f(r);}

};

/**
* TODO: adapt eval_cube to CUDA
*/

/// Evaluate at points formed by tensor product of npt points in each dimension
template <typename functorT, typename T> void eval_cube(const functorT& f, const TensorView<T,1>& x, TensorView<T,1>& values) {
for (size_t i=0; i<x.dim(0); i++) values(i) = f(Coordinate<T,1>{x(0,i)});
}

/// Evaluate at points formed by tensor product of npt points in each dimension
template <typename functorT, typename T> void eval_cube(const functorT& f, const TensorView<T,2>& x, TensorView<T,2>& values) {
for (size_t i=0; i<x.dim(0); i++) {
for (size_t j=0; j<x.dim(1); j++) {
values(i,j) = f(Coordinate<T,2>{x(0,i),x(1,j)});
}
}
}

/// Evaluate at points formed by tensor product of K points in each dimension
template <typename functorT, typename T> void eval_cube(const functorT& f, const TensorView<T,3>& x, TensorView<T,3>& values) {
for (size_t i=0; i<x.dim(0); i++) {
for (size_t j=0; j<x.dim(1); j++) {
for (size_t k=0; k<x.dim(2); k++) {
values(i,j,k) = f(Coordinate<T,3>{x(0,i),x(1,j),x(2,k)});
}
}
}
}

/// Evaluate at points formed by tensor product of K points in each dimension using vectorized form
template <typename functorT, typename T> void eval_cube_vec(const functorT& f, const TensorView<T,1>& x, T* values) {
for (size_t i=0; i<x.dim(0); i++) {
values[i] = f(x(0,i));
}
}

/// Evaluate at points formed by tensor product of K points in each dimension using vectorized form
template <typename functorT, typename T, size_t K2NDIM> void eval_cube_vec(const functorT& f, const TensorView<T,2>& x, T* values) {
for (size_t i=0; i<x.dim(0); i++) {
values[i] = f(x(0,i),x(1,i));
}
}

/// Evaluate at points formed by tensor product of K points in each dimension using vectorized form
template <typename functorT, typename T, size_t K2NDIM> void eval_cube_vec(const functorT& f, const TensorView<T,3>& x, T* values) {
for (size_t i=0; i<K2NDIM; i++) {
values[i] = f(x(0,i),x(1,i),x(2,i));
}
}

namespace detail {
template <class functorT> using initial_level_t =
decltype(std::declval<const functorT>().initial_level());
template <class functorT> using supports_initial_level =
::mra::is_detected<initial_level_t,functorT>;

template <class functorT, class pairT> using is_negligible_t =
decltype(std::declval<const functorT>().is_negligible(std::declval<pairT>(),std::declval<double>()));
template <class functorT, class pairT> using supports_is_negligible =
::mra::is_detected<is_negligible_t,functorT,pairT>;
}

template <typename functionT> Level initial_level(const functionT& f) {
if constexpr (detail::supports_initial_level<functionT>()) return f.initial_level();
else return 2; // <<<<<<<<<<<<<<< needs updating to make user configurable
}

template <typename functionT, typename T, Dimension NDIM>
bool is_negligible(const functionT& f, const std::pair<Coordinate<T,NDIM>,Coordinate<T,NDIM>>& box, T thresh) {
using pairT = std::pair<Coordinate<T,NDIM>,Coordinate<T,NDIM>>;
if constexpr (detail::supports_is_negligible<functionT,pairT>()) return f.is_negligible(box, thresh);
else return false;
}
}
#endif
Loading

0 comments on commit 0ef8577

Please sign in to comment.