forked from TESSEorg/ttg
-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #2 from devreal/mra-device-tensorslice
Add TensorSlice implementation
- Loading branch information
Showing
19 changed files
with
1,915 additions
and
57 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,149 @@ | ||
#ifndef MADFUNCTIONDATA_H_INCL | ||
#define MADFUNCTIONDATA_H_INCL | ||
|
||
#include "../../mratypes.h" | ||
#include "../../mradomain.h" | ||
#include "../../mratwoscale.h" | ||
#include "tensor.h" | ||
#include "gl.h" | ||
|
||
namespace mra { | ||
|
||
/// Convenient co-location of frequently used data | ||
template <typename T, Dimension NDIM> | ||
class FunctionData { | ||
std::size_t K; | ||
Tensor<T,2> phi; // phi(mu,i) = phi(x[mu],i) --- value of scaling functions at quadrature points on level 0 | ||
Tensor<T,2> phibar; // phibar(mu,i) = w[mu]*phi(x[mu],i) | ||
Tensor<T,2> HG; // Two scale filter applied from left to scaling function coeffs | ||
Tensor<T,2> HGT; // Two scale filter applied from right to scaling function coeffs | ||
Tensor<T,2> rm, r0, rp; // blocks of the ABGV central derivative operator | ||
std::unique_ptr<T[]> x, w; // Quadrature points and weights on level 0 | ||
|
||
void make_abgv_diff_operator() { | ||
double iphase = 1.0; | ||
auto r0_view = r0.current_view(); | ||
auto rm_view = rm.current_view(); | ||
auto rp_view = rp.current_view(); | ||
for (auto i: range(K)) { | ||
double jphase = 1.0; | ||
for (auto j : range(K)) { | ||
double gammaij = std::sqrt(double((2*i+1)*(2*j+1))); | ||
double Kij; | ||
if (((i-j)>0) && (((i-j)%2)==1)) | ||
Kij = 2.0; | ||
else | ||
Kij = 0.0; | ||
|
||
r0_view(i,j) = T(0.5*(1.0 - iphase*jphase - 2.0*Kij)*gammaij); | ||
rm_view(i,j) = T(0.5*jphase*gammaij); | ||
rp_view(i,j) = T(-0.5*iphase*gammaij); | ||
} | ||
} | ||
} | ||
|
||
/// Set phi(mu,i) to be phi(x[mu],i) | ||
void make_phi() { | ||
/* retrieve x, w from constant memory */ | ||
const T *x, *w; | ||
detail::GLget(&x, &w, K); | ||
T* p = new T[K]; | ||
auto phi_view = phi.current_view(); | ||
for (size_t mu : range(K)) { | ||
detail::legendre_scaling_functions(x[mu], K, &p[0]); | ||
for (size_t i : range(K)) { | ||
phi_view(mu,i) = p[i]; | ||
} | ||
} | ||
delete[] p; | ||
} | ||
|
||
/// Set phibar(mu,i) to be w[mu]*phi(x[mu],i) | ||
void make_phibar() { | ||
/* retrieve x, w from constant memory */ | ||
const T *x, *w; | ||
detail::GLget(&x, &w, K); | ||
T *p = new T[K]; | ||
auto phibar_view = phibar.current_view(); | ||
for (size_t mu : range(K)) { | ||
detail::legendre_scaling_functions(x[mu], K, &p[0]); | ||
for (size_t i : range(K)) { | ||
phibar_view(mu,i) = w[mu]*p[i]; | ||
} | ||
} | ||
delete[] p; | ||
// FixedTensor<T,K,2> phi, r; | ||
// make_phi<T,K>(phi); | ||
// mTxmq(K, K, K, r.ptr(), phi.ptr(), phibar.ptr()); | ||
// std::cout << r << std::endl; // should be identify matrix | ||
} | ||
|
||
public: | ||
|
||
FunctionData(std::size_t K) | ||
: K(K) | ||
, phi(K, K) | ||
, phibar(K, K) | ||
, HG(2*K, 2*K) | ||
, HGT(2*K, 2*K) | ||
, rm(K, K) | ||
, r0(K, K) | ||
, rp(K, K) | ||
{ | ||
make_phi(); | ||
make_phibar(); | ||
twoscale_get(K, HG.data()); | ||
auto HG_view = HG.current_view(); | ||
auto HGT_view = HGT.current_view(); | ||
for (size_t i : range(2*K)) { | ||
for (size_t j : range(2*K)) { | ||
HGT_view(j,i) = HG_view(i,j); | ||
} | ||
} | ||
make_abgv_diff_operator(); | ||
} | ||
|
||
const auto& get_phi() const {return phi;} | ||
const auto& get_phibar() const {return phibar;} | ||
const auto& get_hg() const {return HG;} | ||
const auto& get_hgT() const {return HGT;} | ||
const auto& get_rm() const {return rm;} | ||
const auto& get_r0() const {return r0;} | ||
const auto& get_rp() const {return rp;} | ||
|
||
/// Set X(d,mu) to be the mu'th quadrature point in dimension d for the box described by key | ||
void make_quadrature_pts(const Key<NDIM>& key, TensorView<T,2>& X) { | ||
const Level n = key.level(); | ||
const std::array<Translation,NDIM>& l = key.translation(); | ||
const T h = std::pow(T(0.5),T(n)); | ||
/* retrieve x[] from constant memory */ | ||
const T *x, *w; | ||
detail::GLget(&x, &w, K); | ||
#ifdef __CUDA_ARCH__ | ||
if (blockIdx.z == 0) { | ||
for (int d = blockIdx.y; d < x.Dim(0); d += blockDim.y) { | ||
T lo, hi; std::tie(lo,hi) = Domain<NDIM>::get(d); | ||
T width = h*Domain<NDIM>::get_width(d); | ||
for (int i = blockIdx.x; i < X.dim(1); i += blockDim.y) { | ||
X(d,i) = lo + width*(l[d] + x[i]); | ||
} | ||
} | ||
} | ||
/* wait for all to complete */ | ||
__syncthreads(); | ||
#else // __CUDA_ARCH__ | ||
for (Dimension d : range(NDIM)) { | ||
T lo, hi; std::tie(lo,hi) = Domain<NDIM>::get(d); | ||
T width = h*Domain<NDIM>::get_width(d); | ||
for (size_t i : X.dim(1)) { | ||
X(d,i) = lo + width*(l[d] + x[i]); | ||
} | ||
} | ||
#endif // __CUDA_ARCH__ | ||
} | ||
}; | ||
|
||
} | ||
|
||
|
||
#endif |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,114 @@ | ||
#ifndef MAD_FUNCTION_FUNCTOR_H_INCL | ||
#define MAD_FUNCTION_FUNCTOR_H_INCL | ||
|
||
#include "tensor.h" | ||
|
||
#include "../../mratypes.h" | ||
|
||
namespace mra { | ||
|
||
|
||
/// Function functor is going away ... don't use! | ||
/// \code | ||
///template <typename T, Dimension NDIM> | ||
/// class FunctionFunctor { | ||
///public: | ||
/// T operator()(const Coordinate<T,NDIM>& r) const; | ||
/// template <size_t K> void operator()(const SimpleTensor<T,NDIM,K>& x, FixedTensor<T,K,NDIM>& values) const; | ||
/// Level initial_level() const; | ||
/// bool is_negligible(const std::pair<Coordinate<T,NDIM>,Coordinate<T,NDIM>>& box, T thresh) const; | ||
/// special point interface to be added | ||
/// } | ||
/// \endcode | ||
|
||
/// Adapts a simple callable to the API needed for evaluation --- implement your own for full vectorization | ||
template <typename T, Dimension NDIM> | ||
class FunctionFunctor { | ||
std::function<T(const Coordinate<T,NDIM>&)> f; | ||
|
||
public: | ||
static const Level default_initial_level = 3; //< needs to become user configurable | ||
|
||
template <typename functionT> | ||
FunctionFunctor(functionT f) : f(f) {} | ||
|
||
/// Evaluate at a single point | ||
T operator()(const Coordinate<T,NDIM>& r) const {return f(r);} | ||
|
||
}; | ||
|
||
/** | ||
* TODO: adapt eval_cube to CUDA | ||
*/ | ||
|
||
/// Evaluate at points formed by tensor product of npt points in each dimension | ||
template <typename functorT, typename T> void eval_cube(const functorT& f, const TensorView<T,1>& x, TensorView<T,1>& values) { | ||
for (size_t i=0; i<x.dim(0); i++) values(i) = f(Coordinate<T,1>{x(0,i)}); | ||
} | ||
|
||
/// Evaluate at points formed by tensor product of npt points in each dimension | ||
template <typename functorT, typename T> void eval_cube(const functorT& f, const TensorView<T,2>& x, TensorView<T,2>& values) { | ||
for (size_t i=0; i<x.dim(0); i++) { | ||
for (size_t j=0; j<x.dim(1); j++) { | ||
values(i,j) = f(Coordinate<T,2>{x(0,i),x(1,j)}); | ||
} | ||
} | ||
} | ||
|
||
/// Evaluate at points formed by tensor product of K points in each dimension | ||
template <typename functorT, typename T> void eval_cube(const functorT& f, const TensorView<T,3>& x, TensorView<T,3>& values) { | ||
for (size_t i=0; i<x.dim(0); i++) { | ||
for (size_t j=0; j<x.dim(1); j++) { | ||
for (size_t k=0; k<x.dim(2); k++) { | ||
values(i,j,k) = f(Coordinate<T,3>{x(0,i),x(1,j),x(2,k)}); | ||
} | ||
} | ||
} | ||
} | ||
|
||
/// Evaluate at points formed by tensor product of K points in each dimension using vectorized form | ||
template <typename functorT, typename T> void eval_cube_vec(const functorT& f, const TensorView<T,1>& x, T* values) { | ||
for (size_t i=0; i<x.dim(0); i++) { | ||
values[i] = f(x(0,i)); | ||
} | ||
} | ||
|
||
/// Evaluate at points formed by tensor product of K points in each dimension using vectorized form | ||
template <typename functorT, typename T, size_t K2NDIM> void eval_cube_vec(const functorT& f, const TensorView<T,2>& x, T* values) { | ||
for (size_t i=0; i<x.dim(0); i++) { | ||
values[i] = f(x(0,i),x(1,i)); | ||
} | ||
} | ||
|
||
/// Evaluate at points formed by tensor product of K points in each dimension using vectorized form | ||
template <typename functorT, typename T, size_t K2NDIM> void eval_cube_vec(const functorT& f, const TensorView<T,3>& x, T* values) { | ||
for (size_t i=0; i<K2NDIM; i++) { | ||
values[i] = f(x(0,i),x(1,i),x(2,i)); | ||
} | ||
} | ||
|
||
namespace detail { | ||
template <class functorT> using initial_level_t = | ||
decltype(std::declval<const functorT>().initial_level()); | ||
template <class functorT> using supports_initial_level = | ||
::mra::is_detected<initial_level_t,functorT>; | ||
|
||
template <class functorT, class pairT> using is_negligible_t = | ||
decltype(std::declval<const functorT>().is_negligible(std::declval<pairT>(),std::declval<double>())); | ||
template <class functorT, class pairT> using supports_is_negligible = | ||
::mra::is_detected<is_negligible_t,functorT,pairT>; | ||
} | ||
|
||
template <typename functionT> Level initial_level(const functionT& f) { | ||
if constexpr (detail::supports_initial_level<functionT>()) return f.initial_level(); | ||
else return 2; // <<<<<<<<<<<<<<< needs updating to make user configurable | ||
} | ||
|
||
template <typename functionT, typename T, Dimension NDIM> | ||
bool is_negligible(const functionT& f, const std::pair<Coordinate<T,NDIM>,Coordinate<T,NDIM>>& box, T thresh) { | ||
using pairT = std::pair<Coordinate<T,NDIM>,Coordinate<T,NDIM>>; | ||
if constexpr (detail::supports_is_negligible<functionT,pairT>()) return f.is_negligible(box, thresh); | ||
else return false; | ||
} | ||
} | ||
#endif |
Oops, something went wrong.