Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Replace new_tensor #17

Merged
merged 1 commit into from
May 16, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 4 additions & 2 deletions src/tad_dftd3/damping/atm.py
Original file line number Diff line number Diff line change
Expand Up @@ -60,6 +60,8 @@ def dispersion_atm(
Tensor
Atom-resolved ATM dispersion energy.
"""
dd = {"device": positions.device, "dtype": positions.dtype}

s9 = s9.type(positions.dtype).to(positions.device)
rs9 = rs9.type(positions.dtype).to(positions.device)
alp = alp.type(positions.dtype).to(positions.device)
Expand All @@ -85,7 +87,7 @@ def dispersion_atm(
torch.cdist(
positions, positions, p=2, compute_mode="use_mm_for_euclid_dist"
),
positions.new_tensor(torch.finfo(positions.dtype).eps),
torch.tensor(torch.finfo(positions.dtype).eps, **dd),
),
2.0,
)
Expand All @@ -107,7 +109,7 @@ def dispersion_atm(
* (r2jk <= cutoff2)
* (r2jk <= cutoff2),
0.375 * s / r5 + 1.0 / r3,
positions.new_tensor(0.0),
torch.tensor(0.0, **dd),
)

energy = ang * fdamp * c9
Expand Down
6 changes: 4 additions & 2 deletions src/tad_dftd3/damping/rational.py
Original file line number Diff line number Diff line change
Expand Up @@ -43,6 +43,8 @@ def rational_damping(
Tensor
Values of the damping function.
"""
a1 = param.get("a1", distances.new_tensor(defaults.A1))
a2 = param.get("a2", distances.new_tensor(defaults.A1))
dd = {"device": distances.device, "dtype": distances.dtype}

a1 = param.get("a1", torch.tensor(defaults.A1, **dd))
a2 = param.get("a2", torch.tensor(defaults.A2, **dd))
return 1.0 / (distances.pow(order) + (a1 * torch.sqrt(qq) + a2).pow(order))
22 changes: 14 additions & 8 deletions src/tad_dftd3/disp.py
Original file line number Diff line number Diff line change
Expand Up @@ -92,8 +92,10 @@ def dispersion(
Damping function evaluate distance dependent contributions.
Additional arguments are passed through to the function.
"""
dd = {"device": positions.device, "dtype": positions.dtype}

if cutoff is None:
cutoff = positions.new_tensor(50.0)
cutoff = torch.tensor(50.0, **dd)
if r4r2 is None:
r4r2 = (
data.sqrt_z_r4_over_r2[numbers].type(positions.dtype).to(positions.device)
Expand Down Expand Up @@ -155,11 +157,13 @@ def dispersion2(
Damping function evaluate distance dependent contributions.
Additional arguments are passed through to the function.
"""
dd = {"device": positions.device, "dtype": positions.dtype}

mask = real_pairs(numbers, diagonal=False)
distances = torch.where(
mask,
torch.cdist(positions, positions, p=2, compute_mode="use_mm_for_euclid_dist"),
positions.new_tensor(torch.finfo(positions.dtype).eps),
torch.tensor(torch.finfo(positions.dtype).eps, **dd),
)

qq = 3 * r4r2.unsqueeze(-1) * r4r2.unsqueeze(-2)
Expand All @@ -168,19 +172,19 @@ def dispersion2(
t6 = torch.where(
mask * (distances <= cutoff),
damping_function(6, distances, qq, param, **kwargs),
positions.new_tensor(0.0),
torch.tensor(0.0, **dd),
)
t8 = torch.where(
mask * (distances <= cutoff),
damping_function(8, distances, qq, param, **kwargs),
positions.new_tensor(0.0),
torch.tensor(0.0, **dd),
)

e6 = -0.5 * torch.sum(c6 * t6, dim=-1)
e8 = -0.5 * torch.sum(c8 * t8, dim=-1)

s6 = param.get("s6", positions.new_tensor(defaults.S6))
s8 = param.get("s8", positions.new_tensor(defaults.S8))
s6 = param.get("s6", torch.tensor(defaults.S6, **dd))
s8 = param.get("s8", torch.tensor(defaults.S8, **dd))
return s6 * e6 + s8 * e8


Expand Down Expand Up @@ -220,8 +224,10 @@ def dispersion3(
Tensor
Atom-resolved three-body dispersion energy.
"""
alp = param.get("alp", positions.new_tensor(14.0))
s9 = param.get("s9", positions.new_tensor(14.0))
dd = {"device": positions.device, "dtype": positions.dtype}

alp = param.get("alp", torch.tensor(14.0, **dd))
s9 = param.get("s9", torch.tensor(1.0, **dd))
rs9 = rs9.type(positions.dtype).to(positions.device)

return dispersion_atm(numbers, positions, c6, rvdw, cutoff, s9, rs9, alp)
2 changes: 1 addition & 1 deletion src/tad_dftd3/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -129,7 +129,7 @@ def weight_references(
weights = torch.where(
mask,
weighting_function(reference.cn[numbers] - cn.unsqueeze(-1), **kwargs),
cn.new_tensor(0.0),
torch.tensor(0.0, device=cn.device, dtype=cn.dtype),
)
norms = torch.add(torch.sum(weights, dim=-1), epsilon)

Expand Down
9 changes: 5 additions & 4 deletions src/tad_dftd3/ncoord.py
Original file line number Diff line number Diff line change
Expand Up @@ -116,8 +116,10 @@ def coordination_number(
-------
Tensor: The coordination number of each atom in the system.
"""
dd = {"device": positions.device, "dtype": positions.dtype}

if cutoff is None:
cutoff = positions.new_tensor(25.0)
cutoff = torch.tensor(25.0, **dd)
if rcov is None:
rcov = data.covalent_rad_d3[numbers].type(positions.dtype).to(positions.device)
if numbers.shape != rcov.shape:
Expand All @@ -127,18 +129,17 @@ def coordination_number(
if numbers.shape != positions.shape[:-1]:
raise ValueError("Shape of positions is not consistent with atomic numbers")

eps = positions.new_tensor(torch.finfo(positions.dtype).eps)
mask = real_pairs(numbers, diagonal=False)
distances = torch.where(
mask,
torch.cdist(positions, positions, p=2, compute_mode="use_mm_for_euclid_dist"),
eps,
torch.tensor(torch.finfo(positions.dtype).eps, **dd),
)

rc = rcov.unsqueeze(-2) + rcov.unsqueeze(-1)
cf = torch.where(
mask * (distances <= cutoff),
counting_function(distances, rc.type(distances.dtype), **kwargs),
positions.new_tensor(0.0),
torch.tensor(0.0, **dd),
)
return torch.sum(cf, dim=-1)