Skip to content

Commit

Permalink
Merge pull request rust-random#474 from MaximoB/add_cauchy_distribution
Browse files Browse the repository at this point in the history
Added Cauchy distribution
  • Loading branch information
dhardy authored May 30, 2018
2 parents cb03f24 + cc377b2 commit c4d1446
Show file tree
Hide file tree
Showing 5 changed files with 140 additions and 13 deletions.
1 change: 1 addition & 0 deletions benches/distributions.rs
Original file line number Diff line number Diff line change
Expand Up @@ -109,6 +109,7 @@ distr_float!(distr_normal, f64, Normal::new(-1.23, 4.56));
distr_float!(distr_log_normal, f64, LogNormal::new(-1.23, 4.56));
distr_float!(distr_gamma_large_shape, f64, Gamma::new(10., 1.0));
distr_float!(distr_gamma_small_shape, f64, Gamma::new(0.1, 1.0));
distr_float!(distr_cauchy, f64, Cauchy::new(4.2, 6.9));
distr_int!(distr_binomial, u64, Binomial::new(20, 0.7));
distr_int!(distr_poisson, u64, Poisson::new(4.0));
distr!(distr_bernoulli, bool, Bernoulli::new(0.18));
Expand Down
12 changes: 6 additions & 6 deletions src/distributions/binomial.rs
Original file line number Diff line number Diff line change
Expand Up @@ -11,9 +11,8 @@
//! The binomial distribution.

use Rng;
use distributions::{Distribution, Bernoulli};
use distributions::{Distribution, Bernoulli, Cauchy};
use distributions::log_gamma::log_gamma;
use std::f64::consts::PI;

/// The binomial distribution `Binomial(n, p)`.
///
Expand Down Expand Up @@ -90,13 +89,14 @@ impl Distribution<u64> for Binomial {

let mut lresult;

// we use the Cauchy distribution as the comparison distribution
// f(x) ~ 1/(1+x^2)
let cauchy = Cauchy::new(0.0, 1.0);
loop {
let mut comp_dev: f64;
// we use the lorentzian distribution as the comparison distribution
// f(x) ~ 1/(1+x/^2)
loop {
// draw from the lorentzian distribution
comp_dev = (PI*rng.gen::<f64>()).tan();
// draw from the Cauchy distribution
comp_dev = rng.sample(cauchy);
// shift the peak of the comparison ditribution
lresult = expected + sq * comp_dev;
// repeat the drawing until we are in the range of possible values
Expand Down
119 changes: 119 additions & 0 deletions src/distributions/cauchy.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,119 @@
// Copyright 2016-2017 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// https://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! The Cauchy distribution.

use Rng;
use distributions::Distribution;
use std::f64::consts::PI;

/// The Cauchy distribution `Cauchy(median, scale)`.
///
/// This distribution has a density function:
/// `f(x) = 1 / (pi * scale * (1 + ((x - median) / scale)^2))`
///
/// # Example
///
/// ```
/// use rand::distributions::{Cauchy, Distribution};
///
/// let cau = Cauchy::new(2.0, 5.0);
/// let v = cau.sample(&mut rand::thread_rng());
/// println!("{} is from a Cauchy(2, 5) distribution", v);
/// ```
#[derive(Clone, Copy, Debug)]
pub struct Cauchy {
median: f64,
scale: f64
}

impl Cauchy {
/// Construct a new `Cauchy` with the given shape parameters
/// `median` the peak location and `scale` the scale factor.
/// Panics if `scale <= 0`.
pub fn new(median: f64, scale: f64) -> Cauchy {
assert!(scale > 0.0, "Cauchy::new called with scale factor <= 0");
Cauchy {
median,
scale
}
}
}

impl Distribution<f64> for Cauchy {
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64 {
// sample from [0, 1)
let mut x = rng.gen::<f64>();
// guard against the extremely unlikely case we get the invalid 0.5
while x == 0.5 {
x = rng.gen::<f64>();
}
// get standard cauchy random number
let comp_dev = (PI * x).tan();
// shift and scale according to parameters
let result = self.median + self.scale * comp_dev;
result
}
}

#[cfg(test)]
mod test {
use distributions::Distribution;
use super::Cauchy;

fn median(mut numbers: &mut [f64]) -> f64 {
sort(&mut numbers);
let mid = numbers.len() / 2;
numbers[mid]
}

fn sort(numbers: &mut [f64]) {
numbers.sort_by(|a, b| a.partial_cmp(b).unwrap());
}

#[test]
fn test_cauchy_median() {
let cauchy = Cauchy::new(10.0, 5.0);
let mut rng = ::test::rng(123);
let mut numbers: [f64; 1000] = [0.0; 1000];
for i in 0..1000 {
numbers[i] = cauchy.sample(&mut rng);
}
let median = median(&mut numbers);
println!("Cauchy median: {}", median);
assert!((median - 10.0).abs() < 0.5); // not 100% certain, but probable enough
}

#[test]
fn test_cauchy_mean() {
let cauchy = Cauchy::new(10.0, 5.0);
let mut rng = ::test::rng(123);
let mut sum = 0.0;
for _ in 0..1000 {
sum += cauchy.sample(&mut rng);
}
let mean = sum / 1000.0;
println!("Cauchy mean: {}", mean);
// for a Cauchy distribution the mean should not converge
assert!((mean - 10.0).abs() > 0.5); // not 100% certain, but probable enough
}

#[test]
#[should_panic]
fn test_cauchy_invalid_scale_zero() {
Cauchy::new(0.0, 0.0);
}

#[test]
#[should_panic]
fn test_cauchy_invalid_scale_neg() {
Cauchy::new(0.0, -10.0);
}
}
6 changes: 6 additions & 0 deletions src/distributions/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -81,6 +81,7 @@
//! - Related to real-valued quantities that grow linearly
//! (e.g. errors, offsets):
//! - [`Normal`] distribution, and [`StandardNormal`] as a primitive
//! - [`Cauchy`] distribution
//! - Related to Bernoulli trials (yes/no events, with a given probability):
//! - [`Binomial`] distribution
//! - [`Bernoulli`] distribution, similar to [`Rng::gen_bool`].
Expand Down Expand Up @@ -147,6 +148,7 @@
//! [`Alphanumeric`]: struct.Alphanumeric.html
//! [`Bernoulli`]: struct.Bernoulli.html
//! [`Binomial`]: struct.Binomial.html
//! [`Cauchy`]: struct.Cauchy.html
//! [`ChiSquared`]: struct.ChiSquared.html
//! [`Exp`]: struct.Exp.html
//! [`Exp1`]: struct.Exp1.html
Expand Down Expand Up @@ -180,6 +182,8 @@ pub use self::uniform::Uniform as Range;
#[cfg(feature = "std")]
#[doc(inline)] pub use self::binomial::Binomial;
#[doc(inline)] pub use self::bernoulli::Bernoulli;
#[cfg(feature = "std")]
#[doc(inline)] pub use self::cauchy::Cauchy;

pub mod uniform;
#[cfg(feature="std")]
Expand All @@ -193,6 +197,8 @@ pub mod uniform;
#[cfg(feature = "std")]
#[doc(hidden)] pub mod binomial;
#[doc(hidden)] pub mod bernoulli;
#[cfg(feature = "std")]
#[doc(hidden)] pub mod cauchy;

mod float;
mod integer;
Expand Down
15 changes: 8 additions & 7 deletions src/distributions/poisson.rs
Original file line number Diff line number Diff line change
Expand Up @@ -11,9 +11,8 @@
//! The Poisson distribution.

use Rng;
use distributions::Distribution;
use distributions::{Distribution, Cauchy};
use distributions::log_gamma::log_gamma;
use std::f64::consts::PI;

/// The Poisson distribution `Poisson(lambda)`.
///
Expand Down Expand Up @@ -73,23 +72,25 @@ impl Distribution<u64> for Poisson {
else {
let mut int_result: u64;

// we use the Cauchy distribution as the comparison distribution
// f(x) ~ 1/(1+x^2)
let cauchy = Cauchy::new(0.0, 1.0);

loop {
let mut result;
let mut comp_dev;

// we use the lorentzian distribution as the comparison distribution
// f(x) ~ 1/(1+x/^2)
loop {
// draw from the lorentzian distribution
comp_dev = (PI * rng.gen::<f64>()).tan();
// draw from the Cauchy distribution
comp_dev = rng.sample(cauchy);
// shift the peak of the comparison ditribution
result = self.sqrt_2lambda * comp_dev + self.lambda;
// repeat the drawing until we are in the range of possible values
if result >= 0.0 {
break;
}
}
// now the result is a random variable greater than 0 with Lorentzian distribution
// now the result is a random variable greater than 0 with Cauchy distribution
// the result should be an integer value
result = result.floor();
int_result = result as u64;
Expand Down

0 comments on commit c4d1446

Please sign in to comment.