-
Notifications
You must be signed in to change notification settings - Fork 116
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
11 changed files
with
192 additions
and
30 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,7 +1,19 @@ | ||
{ | ||
"configs":[ | ||
{"low_threshold": 0.25, "high_threshold": 0.6}, | ||
{"low_threshold": 0.1, "high_threshold": 0.3}, | ||
{"low_threshold": 0.3, "high_threshold": 0.7} | ||
{"low_threshold": 0.2, "high_threshold": 0.3}, | ||
{"low_threshold": 0.2, "high_threshold": 0.4}, | ||
{"low_threshold": 0.3, "high_threshold": 0.4}, | ||
{"low_threshold": 0.3, "high_threshold": 0.5}, | ||
{"low_threshold": 0.1, "high_threshold": 0.3, "sigma": 1.5}, | ||
{"low_threshold": 0.2, "high_threshold": 0.3, "sigma": 1.5}, | ||
{"low_threshold": 0.2, "high_threshold": 0.4, "sigma": 1.5}, | ||
{"low_threshold": 0.3, "high_threshold": 0.4, "sigma": 1.5}, | ||
{"low_threshold": 0.3, "high_threshold": 0.5, "sigma": 1.5}, | ||
{"low_threshold": 0.1, "high_threshold": 0.3, "sigma": 2.5}, | ||
{"low_threshold": 0.2, "high_threshold": 0.3, "sigma": 2.5}, | ||
{"low_threshold": 0.2, "high_threshold": 0.4, "sigma": 2.5}, | ||
{"low_threshold": 0.3, "high_threshold": 0.4, "sigma": 2.5}, | ||
{"low_threshold": 0.3, "high_threshold": 0.5, "sigma": 2.5} | ||
] | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,4 +1,4 @@ | ||
|
||
from .segmentation import dibco_binarization_fn, diva_post_processing_fn, page_post_processing_fn | ||
from .segmentation import dibco_binarization_fn | ||
from .line_detection import cbad_post_processing_fn | ||
from .boxes_detection import cini_post_processing_fn, ornaments_post_processing_fn |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,125 @@ | ||
#!/usr/bin/env python | ||
__author__ = 'solivr' | ||
|
||
import os | ||
import sys | ||
|
||
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir, os.path.pardir))) | ||
from doc_seg.loader import LoadedModel | ||
from cini_post_processing import cini_post_processing_fn | ||
from cini_evaluation import cini_evaluate_folder | ||
|
||
import tensorflow as tf | ||
from tqdm import tqdm | ||
import numpy as np | ||
import argparse | ||
from glob import glob | ||
from scipy.misc import imread, imresize, imsave | ||
import tempfile | ||
import json | ||
from doc_seg.post_processing import PAGE | ||
from doc_seg.utils import hash_dict, dump_json | ||
|
||
|
||
def predict_on_set(filenames_to_predict, model_dir, output_dir): | ||
""" | ||
:param filenames_to_predict: | ||
:param model_dir: | ||
:param output_dir: | ||
:return: | ||
""" | ||
with tf.Session(): | ||
m = LoadedModel(model_dir, 'filename') | ||
for filename in tqdm(filenames_to_predict, desc='Prediction'): | ||
pred = m.predict(filename)['probs'][0] | ||
np.save(os.path.join(output_dir, os.path.basename(filename).split('.')[0]), | ||
np.uint8(255 * pred)) | ||
|
||
|
||
def find_elements(img_filenames, dir_predictions, post_process_params, output_dir, debug=False, mask_dir: str=None): | ||
""" | ||
:param img_filenames: | ||
:param dir_predictions: | ||
:param post_process_params: | ||
:param output_dir: | ||
:return: | ||
""" | ||
|
||
os.makedirs(output_dir, exist_ok=True) | ||
|
||
for filename in tqdm(img_filenames, 'Post-processing'): | ||
orig_img = imread(filename, mode='RGB') | ||
basename = os.path.basename(filename).split('.')[0] | ||
|
||
filename_pred = os.path.join(dir_predictions, basename + '.npy') | ||
pred = np.load(filename_pred)/255 # type: np.ndarray | ||
|
||
contours, lines_mask = cini_post_processing_fn(pred, **post_process_params, | ||
output_basename=os.path.join(output_dir, basename)) | ||
|
||
|
||
if __name__ == '__main__': | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument('-m', '--model-dir', type=str, required=True, | ||
help='Directory of the model (should be of type ''*/export/<timestamp>)') | ||
parser.add_argument('-i', '--input-files', type=str, required=True, nargs='+', | ||
help='Folder containing the images to evaluate the model on') | ||
parser.add_argument('-o', '--output-dir', type=str, required=True, | ||
help='Folder containing the outputs (.npy predictions and visualization errors)') | ||
parser.add_argument('-gt', '--ground_truth_dir', type=str, required=True, | ||
help='Ground truth directory containing the labeled images') | ||
parser.add_argument('--params-file', type=str, default=None, | ||
help='JSOn file containing the params for post-processing') | ||
parser.add_argument('--gpu', type=str, default='0', help='Which GPU to use') | ||
parser.add_argument('-pp', '--post-process-only', default=False, action='store_true', | ||
help='Whether to make or not the prediction') | ||
args = parser.parse_args() | ||
args = vars(args) | ||
|
||
os.environ["CUDA_VISIBLE_DEVICES"] = args.get('gpu') | ||
model_dir = args.get('model_dir') | ||
input_files = args.get('input_files') | ||
if len(input_files) == 0: | ||
raise FileNotFoundError | ||
|
||
output_dir = args.get('output_dir') | ||
os.makedirs(output_dir, exist_ok=True) | ||
|
||
# Prediction | ||
npy_directory = output_dir | ||
if not args.get('post_process_only'): | ||
predict_on_set(input_files, model_dir, npy_directory) | ||
|
||
npy_files = glob(os.path.join(npy_directory, '*.npy')) | ||
|
||
if args.get('params_file') is None: | ||
print('No params file found') | ||
params_list = [{"clean_predictions": True, "advanced": True}] | ||
else: | ||
with open(args.get('params_file'), 'r') as f: | ||
configs_data = json.load(f) | ||
# If the file contains a list of configurations | ||
if 'configs' in configs_data.keys(): | ||
params_list = configs_data['configs'] | ||
assert isinstance(params_list, list) | ||
# Or if there is a single configuration | ||
else: | ||
params_list = [configs_data] | ||
|
||
gt_dir = args.get('ground_truth_dir') | ||
|
||
for params in tqdm(params_list, desc='Params'): | ||
print(params) | ||
exp_dir = os.path.join(output_dir, '_' + hash_dict(params)) | ||
find_elements(input_files, npy_directory, params, exp_dir, debug=False) | ||
|
||
if gt_dir is not None: | ||
scores = cini_evaluate_folder(exp_dir, gt_dir, debug_folder=os.path.join(exp_dir, '_debug')) | ||
dump_json(os.path.join(exp_dir, 'post_process_config.json'), params) | ||
dump_json(os.path.join(exp_dir, 'scores.json'), scores) | ||
print('Scores : {}'.format(scores)) | ||
|
||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters