Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add evaluation script #3

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
70 changes: 70 additions & 0 deletions evaluate.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,70 @@
import sys
import os
import pandas as pd
import numpy as np
from sklearn.metrics import f1_score, classification_report


def get_submitted(parent):
names = [name for name in os.listdir(parent)]
if len(names) == 0:
raise RuntimeError('No files in submitted')
if len(names) > 1:
if names[1] != "metadata":
raise RuntimeError('Multiple files in submitted: {}'.format(' '.join(names)))
return os.path.join(parent, names[0])


def get_reference(parent):
names = [os.path.join(parent, name) for name in os.listdir(parent)]
if len(names) == 0:
raise RuntimeError('No files in reference')
if len(names) != 1:
raise RuntimeError('There should be exact one file in reference: {}'.format(' '.join(names)))
return names[0]


input_dir = sys.argv[1]
output_dir = sys.argv[2]

submit_dir = os.path.join(input_dir, 'res')
truth_dir = os.path.join(input_dir, 'ref')

if not os.path.isdir(submit_dir):
print("%s doesn't exist" % submit_dir)

if os.path.isdir(submit_dir) and os.path.isdir(truth_dir):
if not os.path.exists(output_dir):
os.makedirs(output_dir)

output_filename = os.path.join(output_dir, 'scores.txt')
output_file = open(output_filename, 'w')

truth_file = get_reference(truth_dir)
truth = pd.read_csv(truth_file, sep='\t')

submission_answer_file = get_submitted(submit_dir)
predicted = pd.read_csv(submission_answer_file, sep='\t')
predicted = predicted.fillna(100)

print("MASKS")
f1_masks_stance = f1_score(truth['masks_stance'].values.tolist(), predicted['masks_stance'].values.tolist(), labels=[2, 1, 0], average="macro")
f1_masks_argument = f1_score(truth['masks_argument'].values.tolist(), predicted['masks_argument'].values.tolist(), labels=[2, 1, 0], average="macro")
print('f1_masks_stance_macro: ' + str(f1_masks_stance) + '\n')
print('f1_masks_argument_macro: ' + str(f1_masks_argument) + '\n')

print("VACCINES")
f1_vaccines_stance = f1_score(truth['vaccines_stance'].values.tolist(), predicted['vaccines_stance'].values.tolist(), labels=[2, 1, 0], average="macro")
f1_vaccines_argument = f1_score(truth['vaccines_argument'].values.tolist(), predicted['vaccines_argument'].values.tolist(), labels=[2, 1, 0], average="macro")
print('f1_vaccines_stance_macro: ' + str(f1_vaccines_stance) + '\n')
print('f1_vaccines_argument_macro: ' + str(f1_vaccines_argument) + '\n')

print("QUARANTINE")
f1_quarantine_stance = f1_score(truth['quarantine_stance'].values.tolist(), predicted['quarantine_stance'].values.tolist(), labels=[2, 1, 0], average="macro")
f1_quarantine_argument = f1_score(truth['quarantine_argument'].values.tolist(), predicted['quarantine_argument'].values.tolist(), labels=[2, 1, 0], average="macro")
print('f1_quarantine_stance_macro: ' + str(f1_quarantine_stance) + '\n')
print('f1_quarantine_argument_macro: ' + str(f1_quarantine_argument) + '\n')

output_file.write("f1_stance: " + str((f1_masks_stance+f1_vaccines_stance+f1_quarantine_stance)/3) + "\n")
output_file.write("f1_premise: " + str((f1_masks_argument+f1_vaccines_argument+f1_quarantine_argument)/3) + "\n")
output_file.close()