Skip to content

Commit

Permalink
Implement SparseLU factorization
Browse files Browse the repository at this point in the history
Add `solve_upper_triangular` to `CsrMatrix`

This allows a sparse matrix to be used for efficient solving with a dense LU decomposition.

Add CscBuilder

For partial construction of Csc matrices

Start working on actual LU factorization

Complete basic version of sparse LU factorization

Reformat to compile in old version

Add LU tests

Add upper triangular solve

Complete tests of Sparse LU factorization
  • Loading branch information
JulianKnodt committed Jan 14, 2024
1 parent 0b89950 commit 951ec4b
Show file tree
Hide file tree
Showing 15 changed files with 1,122 additions and 8 deletions.
55 changes: 54 additions & 1 deletion nalgebra-sparse/src/cs.rs
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@ use num_traits::One;

use nalgebra::Scalar;

use crate::pattern::SparsityPattern;
use crate::pattern::{BuilderInsertError, SparsityPattern, SparsityPatternBuilder};
use crate::utils::{apply_permutation, compute_sort_permutation};
use crate::{SparseEntry, SparseEntryMut, SparseFormatError, SparseFormatErrorKind};

Expand Down Expand Up @@ -700,3 +700,56 @@ where

Ok(())
}

#[derive(Debug, Clone, PartialEq, Eq)]
pub struct CsBuilder<T> {
sparsity_builder: SparsityPatternBuilder,
values: Vec<T>,
}

impl<T> CsBuilder<T> {
/// Constructs a new CsBuilder of the given size.
pub fn new(major_dim: usize, minor_dim: usize) -> Self {
Self {
sparsity_builder: SparsityPatternBuilder::new(major_dim, minor_dim),
values: vec![],
}
}
/// Given an existing CsMatrix, allows for modification by converting it into a builder.
pub fn from_mat(mat: CsMatrix<T>) -> Self {
let CsMatrix {
sparsity_pattern,
values,
} = mat;

CsBuilder {
sparsity_builder: SparsityPatternBuilder::from(sparsity_pattern),
values,
}
}
/// Backtracks to a given major index
pub fn revert_to_major(&mut self, maj: usize) -> bool {
if !self.sparsity_builder.revert_to_major(maj) {
return false;
}

self.values.truncate(self.sparsity_builder.num_entries());
true
}
pub fn insert(&mut self, maj: usize, min: usize, val: T) -> Result<(), BuilderInsertError> {
self.sparsity_builder.insert(maj, min)?;
self.values.push(val);
Ok(())
}
pub fn build(self) -> CsMatrix<T> {
let CsBuilder {
sparsity_builder,
values,
} = self;
let sparsity_pattern = sparsity_builder.build();
CsMatrix {
sparsity_pattern,
values,
}
}
}
298 changes: 295 additions & 3 deletions nalgebra-sparse/src/csc.rs
Original file line number Diff line number Diff line change
Expand Up @@ -7,12 +7,14 @@
mod csc_serde;

use crate::cs;
use crate::cs::{CsLane, CsLaneIter, CsLaneIterMut, CsLaneMut, CsMatrix};
use crate::cs::{CsBuilder, CsLane, CsLaneIter, CsLaneIterMut, CsLaneMut, CsMatrix};
use crate::csr::CsrMatrix;
use crate::pattern::{SparsityPattern, SparsityPatternFormatError, SparsityPatternIter};
use crate::pattern::{
BuilderInsertError, SparsityPattern, SparsityPatternFormatError, SparsityPatternIter,
};
use crate::{SparseEntry, SparseEntryMut, SparseFormatError, SparseFormatErrorKind};

use nalgebra::Scalar;
use nalgebra::{RealField, Scalar};
use num_traits::One;
use std::slice::{Iter, IterMut};

Expand Down Expand Up @@ -553,6 +555,269 @@ impl<T> CscMatrix<T> {
self.filter(|i, j, _| i >= j)
}

/// Solves a lower triangular system, `self` is a matrix of NxN, and `b` is a column vector of size N
/// Assuming that b is dense.
pub fn dense_lower_triangular_solve(&self, b: &[T], out: &mut [T], unit_diagonal: bool)
where
T: RealField + Copy,
{
assert_eq!(self.nrows(), self.ncols());
assert_eq!(self.ncols(), b.len());
assert_eq!(out.len(), b.len());
out.copy_from_slice(b);
let n = b.len();

for i in 0..n {
let col = self.col(i);
let mut iter = col.row_indices().iter().zip(col.values().iter()).peekable();
while iter.next_if(|n| *n.0 < i).is_some() {}
if let Some(n) = iter.peek() {
if *n.0 == i && !unit_diagonal {
assert!(*n.0 <= i);
out[i] /= *n.1;
iter.next();
}
}
let mul = out[i];
for (&ri, &v) in col.row_indices().iter().zip(col.values().iter()) {
use std::cmp::Ordering::*;
// ensure that only using the lower part
match ri.cmp(&i) {
Greater => out[ri] -= v * mul,
Equal | Less => {}
}
}
}
}

/// Solves an upper triangular system, `self` is a matrix of NxN, and `b` is a column vector of size N
/// Assuming that b is dense.
pub fn dense_upper_triangular_solve(&self, b: &[T], out: &mut [T])
where
T: RealField + Copy,
{
assert_eq!(self.nrows(), self.ncols());
assert_eq!(self.ncols(), b.len());
assert_eq!(out.len(), b.len());
out.copy_from_slice(b);
let n = b.len();

for i in (0..n).rev() {
let col = self.col(i);
let mut iter = col
.row_indices()
.iter()
.zip(col.values().iter())
.rev()
.peekable();
while iter.next_if(|n| *n.0 > i).is_some() {}
if let Some(n) = iter.peek() {
if *n.0 == i {
out[i] /= *n.1;
iter.next();
}
}
// introduce a NaN, intentionally, if the diagonal doesn't have a value.
let mul = out[i];
for (&row, &v) in iter {
use std::cmp::Ordering::*;
match row.cmp(&i) {
Less => out[row] -= v * mul,
Equal | Greater => {}
}
}
}
}

/// Solves a sparse lower triangular system `Ax = b`, with both the matrix and vector
/// sparse.
/// sparsity_idxs should be precomputed using the sparse_lower_triangle.
pub fn sparse_upper_triangular_solve_sorted(
&self,
b_idxs: &[usize],
b: &[T],

out_sparsity_pattern: &[usize],
out: &mut [T],
) where
T: RealField + Copy,
{
assert_eq!(self.nrows(), self.ncols());
assert_eq!(b_idxs.len(), b.len());
assert!(b_idxs.iter().all(|&bi| bi < self.ncols()));

assert_eq!(out_sparsity_pattern.len(), out.len());
assert!(out_sparsity_pattern.iter().all(|&bi| bi < self.ncols()));

// initialize out with b
out.fill(T::zero());
for (&bv, &bi) in b.iter().zip(b_idxs.iter()) {
let out_pos = out_sparsity_pattern.iter().position(|&p| p == bi).unwrap();
out[out_pos] = bv;
}

for (i, &row) in out_sparsity_pattern.iter().enumerate().rev() {
let col = self.col(row);
let mut iter = col
.row_indices()
.iter()
.zip(col.values().iter())
.rev()
.peekable();

while iter.next_if(|n| *n.0 > row).is_some() {}
match iter.peek() {
Some((&r, &l_val)) if r == row => out[i] /= l_val,
// here it now becomes implicitly 0,
// likely this should introduce NaN or some other behavior.
_ => {}
}
let mul = out[i];
for (ni, &nrow) in out_sparsity_pattern[i + 1..].iter().enumerate().rev() {
assert!(nrow > row);
while iter.next_if(|n| *n.0 > nrow).is_some() {}
let l_val = match iter.peek() {
Some((&r, &l_val)) if r == nrow => l_val,
_ => continue,
};
out[ni] -= l_val * mul;
}
}
}

/// Solves a sparse lower triangular system `Ax = b`, with both the matrix and vector
/// sparse.
/// sparsity_idxs should be precomputed using the sparse_lower_triangle.
/// Assumes that the diagonal of the sparse matrix is all 1 if `assume_unit` is true.
pub fn sparse_lower_triangular_solve(
&self,
b_idxs: &[usize],
b: &[T],
// idx -> row
// for now, is permitted to be unsorted
// TODO maybe would be better to enforce sorted, but would have to sort internally.
out_sparsity_pattern: &[usize],
out: &mut [T],
assume_unit: bool,
) where
T: RealField + Copy,
{
assert_eq!(self.nrows(), self.ncols());
assert_eq!(b.len(), b_idxs.len());
assert!(b_idxs.iter().all(|&bi| bi < self.ncols()));

assert_eq!(out_sparsity_pattern.len(), out.len());
assert!(out_sparsity_pattern.iter().all(|&i| i < self.ncols()));

let is_sorted = (0..out_sparsity_pattern.len() - 1)
.all(|i| out_sparsity_pattern[i] < out_sparsity_pattern[i + 1]);
if is_sorted {
return self.sparse_lower_triangular_solve_sorted(
b_idxs,
b,
out_sparsity_pattern,
out,
assume_unit,
);
}

// initialize out with b
out.fill(T::zero());
for (&bv, &bi) in b.iter().zip(b_idxs.iter()) {
let out_pos = out_sparsity_pattern.iter().position(|&p| p == bi).unwrap();
out[out_pos] = bv;
}

for (i, &row) in out_sparsity_pattern.iter().enumerate() {
let col = self.col(row);
if !assume_unit {
if let Some(l_val) = col.get_entry(row) {
out[i] /= l_val.into_value();
} else {
// diagonal is 0, non-invertible
out[i] /= T::zero();
}
}
let mul = out[i];
for (ni, &nrow) in out_sparsity_pattern.iter().enumerate() {
if nrow <= row {
continue;
}
// TODO in a sorted version may be able to iterate without
// having the cost of binary search at each iteration
let l_val = if let Some(l_val) = col.get_entry(nrow) {
l_val.into_value()
} else {
continue;
};
out[ni] -= l_val * mul;
}
}
}
/// Solves a sparse lower triangular system `Ax = b`, with both the matrix and vector
/// sparse.
/// sparsity_idxs should be precomputed using the sparse_lower_triangle pattern.
///
/// `out_sparsity_pattern` must also be pre-sorted.
///
/// Assumes that the diagonal of the sparse matrix is all 1 if `assume_unit` is true.
pub fn sparse_lower_triangular_solve_sorted(
&self,
// input vector idxs & values
b_idxs: &[usize],
b: &[T],
// idx -> row
// for now, is permitted to be unsorted
// TODO maybe would be better to enforce sorted, but would have to sort internally.
out_sparsity_pattern: &[usize],
out: &mut [T],
assume_unit: bool,
) where
T: RealField + Copy,
{
assert_eq!(self.nrows(), self.ncols());
assert_eq!(b.len(), b_idxs.len());
assert!(b_idxs.iter().all(|&bi| bi < self.ncols()));

assert_eq!(out_sparsity_pattern.len(), out.len());
assert!(out_sparsity_pattern.iter().all(|&i| i < self.ncols()));

// initialize out with b
// TODO can make this more efficient by keeping two iterators in sorted order
out.fill(T::zero());
for (&bv, &bi) in b.iter().zip(b_idxs.iter()) {
let out_pos = out_sparsity_pattern.iter().position(|&p| p == bi).unwrap();
out[out_pos] = bv;
}
// end init

// assuming that the output sparsity pattern is sorted
// iterate thru
for (i, &row) in out_sparsity_pattern.iter().enumerate() {
let col = self.col(row);
let mut iter = col.row_indices().iter().zip(col.values().iter()).peekable();
if !assume_unit {
while iter.next_if(|n| *n.0 < row).is_some() {}
match iter.peek() {
Some((&r, &l_val)) if r == row => out[i] /= l_val,
// here it now becomes implicitly 0,
// likely this should introduce NaN or some other behavior.
_ => {}
}
}
let mul = out[i];
for (ni, &nrow) in out_sparsity_pattern.iter().enumerate().skip(i + 1) {
assert!(nrow > row);
while iter.next_if(|n| *n.0 < nrow).is_some() {}
let l_val = match iter.peek() {
Some((&r, &l_val)) if r == nrow => l_val,
_ => continue,
};
out[ni] -= l_val * mul;
}
}
}

/// Returns the diagonal of the matrix as a sparse matrix.
#[must_use]
pub fn diagonal_as_csc(&self) -> Self
Expand Down Expand Up @@ -784,3 +1049,30 @@ where
self.lane_iter.next().map(|lane| CscColMut { lane })
}
}

/// An incremental builder for a Csc matrix.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct CscBuilder<T>(CsBuilder<T>);

impl<T> CscBuilder<T> {
/// Constructs a new instance of a Csc Builder.
pub fn new(rows: usize, cols: usize) -> Self {
Self(CsBuilder::new(cols, rows))
}
/// Convert back from a matrix to a CscBuilder.
pub fn from_mat(mat: CscMatrix<T>) -> Self {
Self(CsBuilder::from_mat(mat.cs))
}
/// Backtracks back to column `col`, deleting all entries ahead of it.
pub fn revert_to_col(&mut self, col: usize) -> bool {
self.0.revert_to_major(col)
}
/// Inserts a value into the builder. Must be called in ascending col, row order.
pub fn insert(&mut self, row: usize, col: usize, val: T) -> Result<(), BuilderInsertError> {
self.0.insert(col, row, val)
}
/// Converts this builder into a valid CscMatrix.
pub fn build(self) -> CscMatrix<T> {
CscMatrix { cs: self.0.build() }
}
}
Loading

0 comments on commit 951ec4b

Please sign in to comment.