- [Project Page]
- [Paper]
@inproceedings{cai_2024_GSPose,
author = {Cai, Dingding and Heikkil\"a, Janne and Rahtu, Esa},
title = {GS-Pose: Cascaded Framework for Generalizable Segmentation-based 6D Object Pose Estimation},
journal = {arXiv preprint arXiv:2403.10683},
year = {2024},
}
Please start by installing Miniconda3. This repository contains submodules, and the default environment can be installed as below.
git clone git@github.com:dingdingcai/GSPose.git --recursive
cd GSPose
conda env create -f environment.yml
conda activate gspose
bash install_env.sh
Download the pretrained weights and store it as checkpoints/model_wights.pth
.
An example of using GS-Pose for both pose estimation and tracking is provided in notebook
.
Our evaluation is conducted on the LINEMOD and OnePose-LowTexture datasets.
- For comparison with Gen6D, download
LINEMOD_Gen6D
. - For comparion with OnePose++, download
lm
and the YOLOv5 detection resultslm_yolo_detection
. - Download the OnePose-LowTexture dataset and store it under the directory
onepose_dataset
.
All datasets are organised under the dataspace
directory, as below,
dataspace/
├── LINEMOD_Gen6D
│
├── bop_dataset/
│ ├── lm
│ └── lm_yolo_detection
│
├── onepose_dataset/
│ ├── scanned_model
│ └── lowtexture_test_data
│
└── README.md
Evaluation on the subset of LINEMOD (comparison with Gen6D, Cas6D, etc.).
python inference.py --dataset_name LINEMOD_SUBSET --database_dir LMSubSet_database --outpose_dir LMSubSet_pose
Evaluation on all objects of LINEMOD using the built-in detector.
python inference.py --dataset_name LINEMOD --database_dir LM_database --outpose_dir LM_pose
Evaluation on all objects of LINEMOD using the YOLOv5 detection (comparison with OnePose/OnePose++).
python inference.py --dataset_name LINEMOD --database_dir LM_database --outpose_dir LM_yolo_pose
Evaluation on the scanned objects of OnePose-LowTexture.
python inference.py --dataset_name LOWTEXTUREVideo --database_dir LTVideo_database --outpose_dir LTVideo_pose
We utilize a subset (gso_1M
) of the MegaPose dataset for training.
Please download MegaPose/gso_1M
and MegaPose/google_scanned_objects.zip
to the directorydataspace
, and organize the data as
dataspace/
├── MegaPose/
│ ├── webdatasets/gso_1M
│ └── google_scanned_objects
...
execute the following script under the MegaPose
environment for preparing the training data.
python dataset/extract_megapose_to_BOP.py
Then, train the network via
python training/training.py
-
- The code is partially based on DINOv2, 3D Gaussian Splatting, MegaPose, and SC6D.