Skip to content

Latest commit

 

History

History
74 lines (40 loc) · 2.54 KB

ReadMe.md

File metadata and controls

74 lines (40 loc) · 2.54 KB

1. CNN training and logits generation (folder: "scripts/"):

python train_nn.py -h # Get more information about that

  • Example:

python train_nn.py -s 15 -m densenet40 -d CIFAR-10 # Seed, model, dataset

  • Logits from pretrained dataset (folder: "pretrained_models")

python -u get_logits.py -d cifar10 -o c10 python -u get_logits.py -d cifar100 -o c100 python -u get_logits.py -d svhn -o svhn

2. Calibration model's tuning, training and evaluation (folder: "scripts/"):

  • Temperature Scaling (TempS):

python tune_cal_guo.py -c TemperatureScaling

  • Vector Scaling (VecS):

python tune_cal_guo.py -c VectorScaling

  • Dirichlet with L2 regularisation (Dir-L2):

python -u tune_cal_odir.py -i 0 -kf 5 -d --no_mus # File number, number of cross-folds, double learning, no intercept tuning separately

  • Matrix Scaling with Off-diagonal and Intercept regularisation (MS-ODIR):

python -u tune_cal_odir.py -i 0 -kf 5 -d --comp_l2 --use_logits # File number, nr of cross-folds, double learning, complementary l2, use_logits

  • Dirichlet with Off-diagonal and Intercept regularisation (Dir-ODIR):

python -u tune_cal_odir.py -i 0 -kf 5 -d --comp_l2 # File number, number of cross-folds, double learning, complementary l2 (i.e ODIR).

3. Notebooks (folder "scripts/notebooks")

  • Final Results (Table 3 & 4 and Supp. Table 13_18 and Supp. Figure 11)
  • Reliability Diagrams of Dirichlet (Figure 1 and Supp. Figure 12)
  • MS-ODIR vs VecS (Table 21)

4. p-classwise-ECE and p-confidence-ECE generation (folder "scripts/pECE_generation")

(NB! make sure you have generated file "all_scores_val_test_ens_*.p", as it is used for generate_pECE.py)

  • Generate p-ECE for Uncalibrated results:

python generate_uncal_pECE.py -ece_f ECE python generate_uncal_pECE.py -ece_f classwise_ECE

  • Generate p-ECE for Temperature and Vector Scaling results:

python generate_temp_vec_pECE.py -ece_f ECE python generate_temp_vec_pECE.py -ece_f classwise_ECE

  • Generate p-ECE for Dir-L2, Dir-ODIR and MS-ODIR

python generate_pECE.py -ece_f ECE -m dir_l2 python generate_pECE.py -ece_f classwise_ECE -m dir_l2

python generate_pECE.py -ece_f ECE -m dir_l2_mu_off python generate_pECE.py -ece_f classwise_ECE -m dir_l2_mu_off

python generate_pECE.py -ece_f ECE -m mat_scale_l2_mu_off --use_logits python generate_pECE.py -ece_f classwise_ECE -m mat_scale_l2_mu_off --use_logits

5. Notebook for p-ECE results (scripts/notebooks)

  • pECE results (Supp. Table 19_20 and Supp. Figure 11)