python train_nn.py -h # Get more information about that
- Example:
python train_nn.py -s 15 -m densenet40 -d CIFAR-10 # Seed, model, dataset
- Logits from pretrained dataset (folder: "pretrained_models")
python -u get_logits.py -d cifar10 -o c10
python -u get_logits.py -d cifar100 -o c100
python -u get_logits.py -d svhn -o svhn
- Temperature Scaling (TempS):
python tune_cal_guo.py -c TemperatureScaling
- Vector Scaling (VecS):
python tune_cal_guo.py -c VectorScaling
- Dirichlet with L2 regularisation (Dir-L2):
python -u tune_cal_odir.py -i 0 -kf 5 -d --no_mus # File number, number of cross-folds, double learning, no intercept tuning separately
- Matrix Scaling with Off-diagonal and Intercept regularisation (MS-ODIR):
python -u tune_cal_odir.py -i 0 -kf 5 -d --comp_l2 --use_logits # File number, nr of cross-folds, double learning, complementary l2, use_logits
- Dirichlet with Off-diagonal and Intercept regularisation (Dir-ODIR):
python -u tune_cal_odir.py -i 0 -kf 5 -d --comp_l2 # File number, number of cross-folds, double learning, complementary l2 (i.e ODIR).
- Final Results (Table 3 & 4 and Supp. Table 13_18 and Supp. Figure 11)
- Reliability Diagrams of Dirichlet (Figure 1 and Supp. Figure 12)
- MS-ODIR vs VecS (Table 21)
(NB! make sure you have generated file "all_scores_val_test_ens_*.p", as it is used for generate_pECE.py)
- Generate p-ECE for Uncalibrated results:
python generate_uncal_pECE.py -ece_f ECE
python generate_uncal_pECE.py -ece_f classwise_ECE
- Generate p-ECE for Temperature and Vector Scaling results:
python generate_temp_vec_pECE.py -ece_f ECE
python generate_temp_vec_pECE.py -ece_f classwise_ECE
- Generate p-ECE for Dir-L2, Dir-ODIR and MS-ODIR
python generate_pECE.py -ece_f ECE -m dir_l2
python generate_pECE.py -ece_f classwise_ECE -m dir_l2
python generate_pECE.py -ece_f ECE -m dir_l2_mu_off
python generate_pECE.py -ece_f classwise_ECE -m dir_l2_mu_off
python generate_pECE.py -ece_f ECE -m mat_scale_l2_mu_off --use_logits
python generate_pECE.py -ece_f classwise_ECE -m mat_scale_l2_mu_off --use_logits
- pECE results (Supp. Table 19_20 and Supp. Figure 11)