Skip to content

discover-dmc/Linear-Coding-Agent-Harness

 
 

Repository files navigation

Autonomous Coding Agent Demo (Linear-Integrated)

A minimal harness demonstrating long-running autonomous coding with the Claude Agent SDK. This demo implements a two-agent pattern (initializer + coding agent) with Linear as the core project management system for tracking all work.

Key Features

  • Linear Integration: All work is tracked as Linear issues, not local files
  • Real-time Visibility: Watch agent progress directly in your Linear workspace
  • Session Handoff: Agents communicate via Linear comments, not text files
  • Two-Agent Pattern: Initializer creates Linear project & issues, coding agents implement them
  • Browser Testing: Puppeteer MCP for UI verification
  • Claude Opus 4.5: Uses Claude's most capable model by default

Prerequisites

1. Install Claude Code CLI and Python SDK

# Install Claude Code CLI (latest version required)
npm install -g @anthropic-ai/claude-code

# Install Python dependencies
pip install -r requirements.txt

2. Set Up Authentication

You need two authentication tokens:

Claude Code OAuth Token:

# Generate the token using Claude Code CLI
claude setup-token

# Set the environment variable
export CLAUDE_CODE_OAUTH_TOKEN='your-oauth-token-here'

Linear API Key:

# Get your API key from: https://linear.app/YOUR-TEAM/settings/api
export LINEAR_API_KEY='lin_api_xxxxxxxxxxxxx'

3. Verify Installation

claude --version  # Should be latest version
pip show claude-code-sdk  # Check SDK is installed

Quick Start

python autonomous_agent_demo.py --project-dir ./my_project

For testing with limited iterations:

python autonomous_agent_demo.py --project-dir ./my_project --max-iterations 3

How It Works

Linear-Centric Workflow

┌─────────────────────────────────────────────────────────────┐
│                    LINEAR-INTEGRATED WORKFLOW               │
├─────────────────────────────────────────────────────────────┤
│  app_spec.txt ──► Initializer Agent ──► Linear Issues (50) │
│                                              │               │
│                    ┌─────────────────────────▼──────────┐   │
│                    │        LINEAR WORKSPACE            │   │
│                    │  ┌────────────────────────────┐    │   │
│                    │  │ Issue: Auth - Login flow   │    │   │
│                    │  │ Status: Todo → In Progress │    │   │
│                    │  │ Comments: [session notes]  │    │   │
│                    │  └────────────────────────────┘    │   │
│                    └────────────────────────────────────┘   │
│                                              │               │
│                    Coding Agent queries Linear              │
│                    ├── Search for Todo issues               │
│                    ├── Update status to In Progress         │
│                    ├── Implement & test with Puppeteer      │
│                    ├── Add comment with implementation notes│
│                    └── Update status to Done                │
└─────────────────────────────────────────────────────────────┘

Two-Agent Pattern

  1. Initializer Agent (Session 1):

    • Reads app_spec.txt
    • Lists teams and creates a new Linear project
    • Creates 50 Linear issues with detailed test steps
    • Creates a META issue for session tracking
    • Sets up project structure, init.sh, and git
  2. Coding Agent (Sessions 2+):

    • Queries Linear for highest-priority Todo issue
    • Runs verification tests on previously completed features
    • Claims issue (status → In Progress)
    • Implements the feature
    • Tests via Puppeteer browser automation
    • Adds implementation comment to issue
    • Marks complete (status → Done)
    • Updates META issue with session summary

Session Handoff via Linear

Instead of local text files, agents communicate through:

  • Issue Comments: Implementation details, blockers, context
  • META Issue: Session summaries and handoff notes
  • Issue Status: Todo / In Progress / Done workflow

Environment Variables

Variable Description Required
CLAUDE_CODE_OAUTH_TOKEN Claude Code OAuth token (from claude setup-token) Yes
LINEAR_API_KEY Linear API key for MCP access Yes

Command Line Options

Option Description Default
--project-dir Directory for the project ./autonomous_demo_project
--max-iterations Max agent iterations Unlimited
--model Claude model to use claude-opus-4-5-20251101

Project Structure

linear-agent-harness/
├── autonomous_agent_demo.py  # Main entry point
├── agent.py                  # Agent session logic
├── client.py                 # Claude SDK + MCP client configuration
├── security.py               # Bash command allowlist and validation
├── progress.py               # Progress tracking utilities
├── prompts.py                # Prompt loading utilities
├── linear_config.py          # Linear configuration constants
├── prompts/
│   ├── app_spec.txt          # Application specification
│   ├── initializer_prompt.md # First session prompt (creates Linear issues)
│   └── coding_prompt.md      # Continuation session prompt (works issues)
└── requirements.txt          # Python dependencies

Generated Project Structure

After running, your project directory will contain:

my_project/
├── .linear_project.json      # Linear project state (marker file)
├── app_spec.txt              # Copied specification
├── init.sh                   # Environment setup script
├── .claude_settings.json     # Security settings
└── [application files]       # Generated application code

MCP Servers Used

Server Transport Purpose
Linear HTTP (Streamable HTTP) Project management - issues, status, comments
Puppeteer stdio Browser automation for UI testing

Security Model

This demo uses defense-in-depth security (see security.py and client.py):

  1. OS-level Sandbox: Bash commands run in an isolated environment
  2. Filesystem Restrictions: File operations restricted to project directory
  3. Bash Allowlist: Only specific commands permitted (npm, node, git, etc.)
  4. MCP Permissions: Tools explicitly allowed in security settings

Linear Setup

Before running, ensure you have:

  1. A Linear workspace with at least one team
  2. An API key with read/write permissions (from Settings > API)
  3. The agent will automatically detect your team and create a project

The initializer agent will create:

  • A new Linear project named after your app
  • 50 feature issues based on app_spec.txt
  • 1 META issue for session tracking and handoff

All subsequent coding agents will work from this Linear project.

Customization

Changing the Application

Edit prompts/app_spec.txt to specify a different application to build.

Adjusting Issue Count

Edit prompts/initializer_prompt.md and change "50 issues" to your desired count.

Modifying Allowed Commands

Edit security.py to add or remove commands from ALLOWED_COMMANDS.

Troubleshooting

"CLAUDE_CODE_OAUTH_TOKEN not set" Run claude setup-token to generate a token, then export it.

"LINEAR_API_KEY not set" Get your API key from https://linear.app/YOUR-TEAM/settings/api

"Appears to hang on first run" Normal behavior. The initializer is creating a Linear project and 50 issues with detailed descriptions. Watch for [Tool: mcp__linear__create_issue] output.

"Command blocked by security hook" The agent tried to run a disallowed command. Add it to ALLOWED_COMMANDS in security.py if needed.

"MCP server connection failed" Verify your LINEAR_API_KEY is valid and has appropriate permissions. The Linear MCP server uses HTTP transport at https://mcp.linear.app/mcp.

Viewing Progress

Open your Linear workspace to see:

  • The project created by the initializer agent
  • All 50 issues organized under the project
  • Real-time status changes (Todo → In Progress → Done)
  • Implementation comments on each issue
  • Session summaries on the META issue

License

MIT License - see LICENSE for details.

About

Linear Autonomous Coding Agent Harness

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%