-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimageToSpectrum.py
183 lines (142 loc) · 7.14 KB
/
imageToSpectrum.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
"""
Converts raw images taken through a spectroscope into R, G, and B spectral sensetivity curves
Intended to be run as a script
"""
import cv2
import rawpy
import numpy as np
import spectrumTools
#[Image Name, Threshold (can be manually tweaked. helps with processing), [Start Wavelength, End Wavelength]]
skyImg = ['sky', 0.5, [385, 725]]
sunImg = ['sunlightDim', 0.08, [385, 725]]
benQImg = ['BenQ2', 0.1, [385, 725]]
iPadImg = ['iPad', 0.3, [385, 725]]
incadecentAImg = ['IncadecentA_card', 0.5, [385, 725]]
incadecentBImg = ['IncadecentB_card', 0.5, [385, 725]]
ledImg = ['LED_card', 0.5, [385, 725]]
def stretch(img, mask=None):
"""Stretch the image to enhance contrast"""
mask = mask if mask is not None else np.ones(img.shape, dtype='bool')
minVal = np.min(img[mask])
maxVal = np.max(img[mask])
magnitude = maxVal - minVal
stretched = (img - minVal) / magnitude
stretched[np.logical_not(mask)] = 0
return stretched
def autoBB(img, threshold):
"""Return the BB for the wavelength numbers and for the spectrum"""
scaled = stretch(img)
brightSubpixelMask = scaled > threshold
brightSubpixelMask = brightSubpixelMask.astype('uint8') * 255
morphologyKernel = np.ones((21, 21), np.uint8)
dilated = cv2.dilate(brightSubpixelMask, morphologyKernel, iterations=1)
contours, _ = cv2.findContours(dilated, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
areas = [cv2.contourArea(contour) for contour in contours]
largestContour = np.argmax(areas)
numbersBB = cv2.boundingRect(contours[largestContour])
spectrumBB = numbersBB + np.array([0, int(1 * numbersBB[3]), 0, int(-0.5 * numbersBB[3])]) #Just offset the numberline by 2 times its height. Samples roughly the middle of the spectrum area
return [numbersBB, spectrumBB]
def extractSpectrum(spectrum, mask):
"""
Takes a image of just the spectroscope spectrum and a mask defining which color pixels to extract
returns both the masked spectrum image and the median of each column of pixels. Each column should correlate with a certain wavlength range (to be calculated later)
"""
img = np.copy(spectrum)
img[np.logical_not(mask)] = 0
rowMask = np.any(img.T, axis=0)
medians = np.median(img.T[:, rowMask], axis=1)
medians = medians[medians > 0]
return [img, medians]
#Crop is [[Y, X], [Height, Width], HeightRatio]
def extractSpectrums(imgFileName, threshold, wavelengthRange):#, crop=None):
"""Extracts the spectrum and returns an object containing the wavelength number image, each color channel image, each color channel medians, and the wavelength range"""
with rawpy.imread('images/imagesRed/{}.DNG'.format(imgFileName)) as raw:
img = raw.raw_image
colors = raw.raw_colors
redMask = colors == 0
greenMask = colors == 1
blueMask = colors == 2
numbersBB, spectrumBB = autoBB(img, threshold)
numbers = np.copy(img[numbersBB[1]:(numbersBB[1] + numbersBB[3]), numbersBB[0]:(numbersBB[0] + numbersBB[2])])
spectrum = np.copy(img[spectrumBB[1]:(spectrumBB[1] + spectrumBB[3]), spectrumBB[0]:(spectrumBB[0] + spectrumBB[2])])
numbersRedMask = redMask[numbersBB[1]:(numbersBB[1] + numbersBB[3]), numbersBB[0]:(numbersBB[0] + numbersBB[2])]
redMask = redMask[spectrumBB[1]:(spectrumBB[1] + spectrumBB[3]), spectrumBB[0]:(spectrumBB[0] + spectrumBB[2])]
greenMask = greenMask[spectrumBB[1]:(spectrumBB[1] + spectrumBB[3]), spectrumBB[0]:(spectrumBB[0] + spectrumBB[2])]
blueMask = blueMask[spectrumBB[1]:(spectrumBB[1] + spectrumBB[3]), spectrumBB[0]:(spectrumBB[0] + spectrumBB[2])]
print('Numbers Size :: {}'.format(numbersBB))
print('Specturm Size :: {}'.format(spectrumBB))
numbers = stretch(numbers, numbersRedMask)
stretched = stretch(spectrum)
redImg, redMedians = extractSpectrum(stretched, redMask)
greenImg, greenMedians = extractSpectrum(stretched, greenMask)
blueImg, blueMedians = extractSpectrum(stretched, blueMask)
lenRed = len(redMedians)
lenGreen = len(greenMedians)
lenBlue = len(blueMedians)
offByOneCheck = min([lenRed, lenGreen, lenBlue])
if ((lenRed - offByOneCheck) > 1) or ((lenGreen - offByOneCheck) > 1) or ((lenBlue - offByOneCheck) > 1):
raise ValueError('Number of pixels offset > 1')
redMedians = redMedians[:offByOneCheck]
greenMedians = greenMedians[:offByOneCheck]
blueMedians = blueMedians[:offByOneCheck]
return [numbers, [redImg, redMedians], [greenImg, greenMedians], [blueImg, blueMedians], wavelengthRange]
def showSpectrum(imageSpectrumObject, name, wait=True):
"""Show the spectrum that extractSpectrums returns. Breaks the spectrums out by RGB"""
numbers, red, green, blue, _ = imageSpectrumObject
stacked = np.vstack([numbers, red[0], green[0], blue[0]])
cv2.imshow('RGB {}'.format(name), stacked)
if wait:
cv2.waitKey(0)
def getCurves(imageSpectrumObject):
"""Takes the output of extract spectrums and returns the RGB curve object"""
_, red, green, blue, wavelengthRange = imageSpectrumObject
redX = np.linspace(wavelengthRange[0], wavelengthRange[1], len(red[1]))
greenX = np.linspace(wavelengthRange[0], wavelengthRange[1], len(green[1]))
blueX = np.linspace(wavelengthRange[0], wavelengthRange[1], len(blue[1]))
redCurve = np.stack([redX, red[1]], axis=1)
greenCurve = np.stack([greenX, green[1]], axis=1)
blueCurve = np.stack([blueX, blue[1]], axis=1)
redCurveObject = spectrumTools.makeCurveObject(redCurve, wavelengthRange, [0, 1], [0, 1])
greenCurveObject = spectrumTools.makeCurveObject(greenCurve, wavelengthRange, [0, 1], [0, 1])
blueCurveObject = spectrumTools.makeCurveObject(blueCurve, wavelengthRange, [0, 1], [0, 1])
return [redCurveObject, greenCurveObject, blueCurveObject]
def saveCurves(rgbSpectrumList, name):
"""Saves the RGB curve object"""
spectrumTools.writeMeasuredCurve('{}_red'.format(name), rgbSpectrumList[0])
spectrumTools.writeMeasuredCurve('{}_green'.format(name), rgbSpectrumList[1])
spectrumTools.writeMeasuredCurve('{}_blue'.format(name), rgbSpectrumList[2])
#led = extractSpectrums(*ledImg)
#ledCurves = getCurves(led)
#spectrumTools.plotRGBCurves(ledCurves)
#saveCurves(ledCurves, 'led')
#showSpectrum(led, 'led')
#incA = extractSpectrums(*incadecentAImg)
#incACurves = getCurves(incA)
#spectrumTools.plotRGBCurves(incACurves)
#saveCurves(incACurves, 'incA')
#showSpectrum(incA, 'incA')
#incB = extractSpectrums(*incadecentBImg)
#incBCurves = getCurves(incB)
#spectrumTools.plotRGBCurves(incBCurves)
#saveCurves(incBCurves, 'incB')
#showSpectrum(incB, 'incB')
#sky = extractSpectrums(*skyImg)
#skyCurves = getCurves(sky)
#spectrumTools.plotRGBCurves(skyCurves)
#saveCurves(skyCurves, 'sky')
#showSpectrum(sky, 'sky')
sun = extractSpectrums(*sunImg)
sunCurves = getCurves(sun)
spectrumTools.plotRGBCurves(sunCurves)
#saveCurves(sunCurves, 'sun')
showSpectrum(sun, 'sun')
#benQ = extractSpectrums(*benQImg)
#benQCurves = getCurves(benQ)
#spectrumTools.plotRGBCurves(benQCurves)
#saveCurves(benQCurves, 'benQ')
#showSpectrum(benQ, 'benQ')
#iPad = extractSpectrums(*iPadImg)
#iPadCurves = getCurves(iPad)
#spectrumTools.plotRGBCurves(iPadCurves)
#saveCurves(iPadCurves, 'iPad')
#showSpectrum(iPad, 'iPad')