Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Document more objective parameters in R package #5682

Merged
merged 3 commits into from
May 20, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
9 changes: 6 additions & 3 deletions R-package/R/xgb.cv.R
Original file line number Diff line number Diff line change
Expand Up @@ -2,12 +2,15 @@
#'
#' The cross validation function of xgboost
#'
#' @param params the list of parameters. Commonly used ones are:
#' @param params the list of parameters. The complete list of parameters is
#' available in the \href{http://xgboost.readthedocs.io/en/latest/parameter.html}{online documentation}. Below
#' is a shorter summary:
#' \itemize{
#' \item \code{objective} objective function, common ones are
#' \itemize{
#' \item \code{reg:squarederror} Regression with squared loss
#' \item \code{binary:logistic} logistic regression for classification
#' \item \code{reg:squarederror} Regression with squared loss.
#' \item \code{binary:logistic} logistic regression for classification.
#' \item See \code{\link[=xgb.train]{xgb.train}()} for complete list of objectives.
#' }
#' \item \code{eta} step size of each boosting step
#' \item \code{max_depth} maximum depth of the tree
Expand Down
18 changes: 14 additions & 4 deletions R-package/R/xgb.train.R
Original file line number Diff line number Diff line change
Expand Up @@ -3,9 +3,9 @@
#' \code{xgb.train} is an advanced interface for training an xgboost model.
#' The \code{xgboost} function is a simpler wrapper for \code{xgb.train}.
#'
#' @param params the list of parameters.
#' The complete list of parameters is available at \url{http://xgboost.readthedocs.io/en/latest/parameter.html}.
#' Below is a shorter summary:
#' @param params the list of parameters. The complete list of parameters is
#' available in the \href{http://xgboost.readthedocs.io/en/latest/parameter.html}{online documentation}. Below
#' is a shorter summary:
#'
#' 1. General Parameters
#'
Expand Down Expand Up @@ -43,13 +43,23 @@
#' \item \code{objective} specify the learning task and the corresponding learning objective, users can pass a self-defined function to it. The default objective options are below:
#' \itemize{
#' \item \code{reg:squarederror} Regression with squared loss (Default).
#' \item \code{reg:squaredlogerror}: regression with squared log loss \eqn{1/2 * (log(pred + 1) - log(label + 1))^2}. All inputs are required to be greater than -1. Also, see metric rmsle for possible issue with this objective.
#' \item \code{reg:logistic} logistic regression.
#' \item \code{reg:pseudohubererror}: regression with Pseudo Huber loss, a twice differentiable alternative to absolute loss.
#' \item \code{binary:logistic} logistic regression for binary classification. Output probability.
#' \item \code{binary:logitraw} logistic regression for binary classification, output score before logistic transformation.
#' \item \code{num_class} set the number of classes. To use only with multiclass objectives.
#' \item \code{binary:hinge}: hinge loss for binary classification. This makes predictions of 0 or 1, rather than producing probabilities.
#' \item \code{count:poisson}: poisson regression for count data, output mean of poisson distribution. \code{max_delta_step} is set to 0.7 by default in poisson regression (used to safeguard optimization).
#' \item \code{survival:cox}: Cox regression for right censored survival time data (negative values are considered right censored). Note that predictions are returned on the hazard ratio scale (i.e., as HR = exp(marginal_prediction) in the proportional hazard function \code{h(t) = h0(t) * HR)}.
#' \item \code{survival:aft}: Accelerated failure time model for censored survival time data. See \href{https://xgboost.readthedocs.io/en/latest/tutorials/aft_survival_analysis.html}{Survival Analysis with Accelerated Failure Time} for details.
#' \item \code{aft_loss_distribution}: Probabilty Density Function used by \code{survival:aft} and \code{aft-nloglik} metric.
#' \item \code{multi:softmax} set xgboost to do multiclass classification using the softmax objective. Class is represented by a number and should be from 0 to \code{num_class - 1}.
#' \item \code{multi:softprob} same as softmax, but prediction outputs a vector of ndata * nclass elements, which can be further reshaped to ndata, nclass matrix. The result contains predicted probabilities of each data point belonging to each class.
#' \item \code{rank:pairwise} set xgboost to do ranking task by minimizing the pairwise loss.
#' \item \code{rank:ndcg}: Use LambdaMART to perform list-wise ranking where \href{https://en.wikipedia.org/wiki/Discounted_cumulative_gain}{Normalized Discounted Cumulative Gain (NDCG)} is maximized.
#' \item \code{rank:map}: Use LambdaMART to perform list-wise ranking where \href{https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)#Mean_average_precision}{Mean Average Precision (MAP)} is maximized.
#' \item \code{reg:gamma}: gamma regression with log-link. Output is a mean of gamma distribution. It might be useful, e.g., for modeling insurance claims severity, or for any outcome that might be \href{https://en.wikipedia.org/wiki/Gamma_distribution#Applications}{gamma-distributed}.
#' \item \code{reg:tweedie}: Tweedie regression with log-link. It might be useful, e.g., for modeling total loss in insurance, or for any outcome that might be \href{https://en.wikipedia.org/wiki/Tweedie_distribution#Applications}{Tweedie-distributed}.
#' }
#' \item \code{base_score} the initial prediction score of all instances, global bias. Default: 0.5
#' \item \code{eval_metric} evaluation metrics for validation data. Users can pass a self-defined function to it. Default: metric will be assigned according to objective(rmse for regression, and error for classification, mean average precision for ranking). List is provided in detail section.
Expand Down
9 changes: 6 additions & 3 deletions R-package/man/xgb.cv.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

6 changes: 3 additions & 3 deletions R-package/man/xgb.load.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

18 changes: 14 additions & 4 deletions R-package/man/xgb.train.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.