Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[R] fix uses of 1:length(x) and other small things #5992

Merged
merged 1 commit into from
Aug 8, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion R-package/R/xgb.DMatrix.R
Original file line number Diff line number Diff line change
Expand Up @@ -357,7 +357,7 @@ slice.xgb.DMatrix <- function(object, idxset, ...) {
#' @export
print.xgb.DMatrix <- function(x, verbose = FALSE, ...) {
cat('xgb.DMatrix dim:', nrow(x), 'x', ncol(x), ' info: ')
infos <- c()
infos <- character(0)
if (length(getinfo(x, 'label')) > 0) infos <- 'label'
if (length(getinfo(x, 'weight')) > 0) infos <- c(infos, 'weight')
if (length(getinfo(x, 'base_margin')) > 0) infos <- c(infos, 'base_margin')
Expand Down
4 changes: 2 additions & 2 deletions R-package/R/xgb.plot.importance.R
Original file line number Diff line number Diff line change
Expand Up @@ -106,12 +106,12 @@ xgb.plot.importance <- function(importance_matrix = NULL, top_n = NULL, measure
par(mar = mar)

# reverse the order of rows to have the highest ranked at the top
importance_matrix[nrow(importance_matrix):1,
importance_matrix[rev(seq_len(nrow(importance_matrix))),
barplot(Importance, horiz = TRUE, border = NA, cex.names = cex,
names.arg = Feature, las = 1, ...)]
grid(NULL, NA)
# redraw over the grid
importance_matrix[nrow(importance_matrix):1,
importance_matrix[rev(seq_len(nrow(importance_matrix))),
barplot(Importance, horiz = TRUE, border = NA, add = TRUE)]
par(op)
}
Expand Down
4 changes: 2 additions & 2 deletions R-package/R/xgb.plot.shap.R
Original file line number Diff line number Diff line change
Expand Up @@ -124,7 +124,7 @@ xgb.plot.shap <- function(data, shap_contrib = NULL, features = NULL, top_n = 1,
stop("shap_contrib is not compatible with the provided data")

nsample <- if (is.null(subsample)) min(100000, nrow(data)) else as.integer(subsample * nrow(data))
idx <- sample(1:nrow(data), nsample)
idx <- sample(seq_len(nrow(data)), nsample)
data <- data[idx, ]

if (is.null(shap_contrib)) {
Expand Down Expand Up @@ -162,7 +162,7 @@ xgb.plot.shap <- function(data, shap_contrib = NULL, features = NULL, top_n = 1,
data <- data[, features, drop = FALSE]
cols <- colnames(data)
if (is.null(cols)) cols <- colnames(shap_contrib)
if (is.null(cols)) cols <- paste0('X', 1:ncol(data))
if (is.null(cols)) cols <- paste0('X', seq_len(ncol(data)))
colnames(data) <- cols
colnames(shap_contrib) <- cols

Expand Down
6 changes: 3 additions & 3 deletions R-package/demo/interaction_constraints.R
Original file line number Diff line number Diff line change
Expand Up @@ -36,7 +36,7 @@ treeInteractions <- function(input_tree, input_max_depth) {
interaction_trees <- trees[!is.na(Split) & !is.na(parent_1),
c('Feature', paste0('parent_feat_', 1:(input_max_depth - 1))),
with = FALSE]
interaction_trees_split <- split(interaction_trees, 1:nrow(interaction_trees))
interaction_trees_split <- split(interaction_trees, seq_len(nrow(interaction_trees)))
interaction_list <- lapply(interaction_trees_split, as.character)

# Remove NAs (no parent interaction)
Expand Down Expand Up @@ -101,8 +101,8 @@ bst3_interactions <- treeInteractions(bst3_tree, 4)

# Show monotonic constraints still apply by checking scores after incrementing V1
x1 <- sort(unique(x[['V1']]))
for (i in 1:length(x1)){
testdata <- copy(x[, -c('V1')])
for (i in seq_along(x1)){
testdata <- copy(x[, - ('V1')])
testdata[['V1']] <- x1[i]
testdata <- testdata[, paste0('V', 1:10), with = FALSE]
pred <- predict(bst3, as.matrix(testdata))
Expand Down
10 changes: 5 additions & 5 deletions R-package/tests/run_lint.R
Original file line number Diff line number Diff line change
Expand Up @@ -6,21 +6,21 @@ my_linters <- list(
assignment_linter = lintr::assignment_linter,
closed_curly_linter = lintr::closed_curly_linter,
commas_linter = lintr::commas_linter,
# commented_code_linter = lintr::commented_code_linter,
equals_na = lintr::equals_na_linter,
infix_spaces_linter = lintr::infix_spaces_linter,
line_length_linter = lintr::line_length_linter,
no_tab_linter = lintr::no_tab_linter,
object_usage_linter = lintr::object_usage_linter,
# snake_case_linter = lintr::snake_case_linter,
# multiple_dots_linter = lintr::multiple_dots_linter,
object_length_linter = lintr::object_length_linter,
open_curly_linter = lintr::open_curly_linter,
# single_quotes_linter = lintr::single_quotes_linter,
semicolon = lintr::semicolon_terminator_linter,
seq = lintr::seq_linter,
spaces_inside_linter = lintr::spaces_inside_linter,
spaces_left_parentheses_linter = lintr::spaces_left_parentheses_linter,
trailing_blank_lines_linter = lintr::trailing_blank_lines_linter,
trailing_whitespace_linter = lintr::trailing_whitespace_linter,
true_false = lintr::T_and_F_symbol_linter
true_false = lintr::T_and_F_symbol_linter,
unneeded_concatenation = lintr::unneeded_concatenation_linter
)

results <- lapply(
Expand Down
2 changes: 1 addition & 1 deletion R-package/tests/testthat/test_dmatrix.R
Original file line number Diff line number Diff line change
Expand Up @@ -99,7 +99,7 @@ test_that("xgb.DMatrix: colnames", {
dtest <- xgb.DMatrix(test_data, label = test_label)
expect_equal(colnames(dtest), colnames(test_data))
expect_error(colnames(dtest) <- 'asdf')
new_names <- make.names(1:ncol(test_data))
new_names <- make.names(seq_len(ncol(test_data)))
expect_silent(colnames(dtest) <- new_names)
expect_equal(colnames(dtest), new_names)
expect_silent(colnames(dtest) <- NULL)
Expand Down
2 changes: 1 addition & 1 deletion R-package/tests/testthat/test_helpers.R
Original file line number Diff line number Diff line change
Expand Up @@ -174,7 +174,7 @@ test_that("SHAPs sum to predictions, with or without DART", {

expect_equal(rowSums(shap), pred, tol = tol)
expect_equal(apply(shapi, 1, sum), pred, tol = tol)
for (i in 1 : nrow(d))
for (i in seq_len(nrow(d)))
for (f in list(rowSums, colSums))
expect_equal(f(shapi[i, , ]), shap[i, ], tol = tol)
}
Expand Down