Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

More categorical tests and disable shap sparse test. #6219

Merged
merged 4 commits into from
Oct 10, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 9 additions & 3 deletions src/common/json.cc
Original file line number Diff line number Diff line change
Expand Up @@ -186,7 +186,9 @@ Json& JsonObject::operator[](int ind) {
}

bool JsonObject::operator==(Value const& rhs) const {
if (!IsA<JsonObject>(&rhs)) { return false; }
if (!IsA<JsonObject>(&rhs)) {
return false;
}
return object_ == Cast<JsonObject const>(&rhs)->GetObject();
}

Expand Down Expand Up @@ -275,10 +277,14 @@ Json& JsonNumber::operator[](int ind) {

bool JsonNumber::operator==(Value const& rhs) const {
if (!IsA<JsonNumber>(&rhs)) { return false; }
auto r_num = Cast<JsonNumber const>(&rhs)->GetNumber();
if (std::isinf(number_)) {
return std::isinf(Cast<JsonNumber const>(&rhs)->GetNumber());
return std::isinf(r_num);
}
if (std::isnan(number_)) {
return std::isnan(r_num);
}
return std::abs(number_ - Cast<JsonNumber const>(&rhs)->GetNumber()) < kRtEps;
return number_ - r_num == 0;
}

Value & JsonNumber::operator=(Value const &rhs) {
Expand Down
9 changes: 5 additions & 4 deletions src/tree/tree_model.cc
Original file line number Diff line number Diff line change
Expand Up @@ -792,16 +792,17 @@ void RegTree::LoadCategoricalSplit(Json const& in) {
auto j_begin = get<Integer const>(categories_segments[cnt]);
auto j_end = get<Integer const>(categories_sizes[cnt]) + j_begin;
bst_cat_t max_cat{std::numeric_limits<bst_cat_t>::min()};
CHECK_NE(j_end - j_begin, 0) << nidx;

for (auto j = j_begin; j < j_end; ++j) {
auto const &category = get<Integer const>(categories[j]);
auto cat = common::AsCat(category);
max_cat = std::max(max_cat, cat);
}
size_t size = max_cat == std::numeric_limits<bst_cat_t>::min()
? 0
: common::KCatBitField::ComputeStorageSize(max_cat);
size = size == 0 ? 1 : size;
// Have at least 1 category in split.
CHECK_NE(std::numeric_limits<bst_cat_t>::min(), max_cat);
size_t n_cats = max_cat + 1; // cat 0
size_t size = common::KCatBitField::ComputeStorageSize(n_cats);
std::vector<uint32_t> cat_bits_storage(size, 0);
common::CatBitField cat_bits{common::Span<uint32_t>(cat_bits_storage)};
for (auto j = j_begin; j < j_end; ++j) {
Expand Down
72 changes: 72 additions & 0 deletions tests/cpp/tree/test_tree_model.cc
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@
#include "xgboost/json_io.h"
#include "xgboost/tree_model.h"
#include "../../../src/common/bitfield.h"
#include "../../../src/common/categorical.h"

namespace xgboost {
#if DMLC_IO_NO_ENDIAN_SWAP // skip on big-endian machines
Expand Down Expand Up @@ -150,6 +151,77 @@ TEST(Tree, ExpandCategoricalFeature) {
}
}

void GrowTree(RegTree* p_tree) {
SimpleLCG lcg;
size_t n_expands = 10;
constexpr size_t kCols = 256;
SimpleRealUniformDistribution<double> coin(0.0, 1.0);
SimpleRealUniformDistribution<double> feat(0.0, kCols);
SimpleRealUniformDistribution<double> split_cat(0.0, 128.0);
SimpleRealUniformDistribution<double> split_value(0.0, kCols);

std::stack<bst_node_t> stack;
stack.push(RegTree::kRoot);
auto& tree = *p_tree;

for (size_t i = 0; i < n_expands; ++i) {
auto is_cat = coin(&lcg) <= 0.5;
bst_node_t node = stack.top();
stack.pop();

bst_feature_t f = feat(&lcg);
if (is_cat) {
bst_cat_t cat = common::AsCat(split_cat(&lcg));
std::vector<uint32_t> split_cats(
LBitField32::ComputeStorageSize(cat + 1));
LBitField32 bitset{split_cats};
bitset.Set(cat);
tree.ExpandCategorical(node, f, split_cats, true, 1.0, 2.0, 3.0, 11.0, 2.0,
/*left_sum=*/3.0, /*right_sum=*/4.0);
} else {
auto split = split_value(&lcg);
tree.ExpandNode(node, f, split, true, 1.0, 2.0, 3.0, 11.0, 2.0,
/*left_sum=*/3.0, /*right_sum=*/4.0);
}

stack.push(tree[node].LeftChild());
stack.push(tree[node].RightChild());
}
}

void CheckReload(RegTree const &tree) {
Json out{Object()};
tree.SaveModel(&out);

RegTree loaded_tree;
loaded_tree.LoadModel(out);
Json saved{Object()};
loaded_tree.SaveModel(&saved);

auto same = out == saved;
ASSERT_TRUE(same);
}

TEST(Tree, CategoricalIO) {
{
RegTree tree;
bst_cat_t cat = 32;
std::vector<uint32_t> split_cats(LBitField32::ComputeStorageSize(cat + 1));
LBitField32 bitset{split_cats};
bitset.Set(cat);
tree.ExpandCategorical(0, 0, split_cats, true, 1.0, 2.0, 3.0, 11.0, 2.0,
/*left_sum=*/3.0, /*right_sum=*/4.0);

CheckReload(tree);
}

{
RegTree tree;
GrowTree(&tree);
CheckReload(tree);
}
}

namespace {
RegTree ConstructTree() {
RegTree tree;
Expand Down
7 changes: 6 additions & 1 deletion tests/python-gpu/test_gpu_prediction.py
Original file line number Diff line number Diff line change
Expand Up @@ -212,6 +212,10 @@ def test_shap(self, num_rounds, dataset, param):
tm.dataset_strategy, shap_parameter_strategy)
@settings(deadline=None, max_examples=20)
def test_shap_interactions(self, num_rounds, dataset, param):
if dataset.name == 'sparse':
issue = 'https://github.com/dmlc/xgboost/issues/6074'
pytest.xfail(reason=f'GPU shap with sparse is flaky: {issue}')

param.update({"predictor": "gpu_predictor", "gpu_id": 0})
param = dataset.set_params(param)
dmat = dataset.get_dmat()
Expand All @@ -220,5 +224,6 @@ def test_shap_interactions(self, num_rounds, dataset, param):
shap = bst.predict(test_dmat, pred_interactions=True)
margin = bst.predict(test_dmat, output_margin=True)
assume(len(dataset.y) > 0)
assert np.allclose(np.sum(shap, axis=(len(shap.shape) - 1, len(shap.shape) - 2)), margin,
assert np.allclose(np.sum(shap, axis=(len(shap.shape) - 1, len(shap.shape) - 2)),
margin,
1e-3, 1e-3)
49 changes: 29 additions & 20 deletions tests/python-gpu/test_gpu_updaters.py
Original file line number Diff line number Diff line change
Expand Up @@ -41,7 +41,24 @@ def test_gpu_hist(self, param, num_rounds, dataset):
note(result)
assert tm.non_increasing(result['train'][dataset.metric])

def run_categorical_basic(self, cat, onehot, label, rounds):
def run_categorical_basic(self, rows, cols, rounds, cats):
import pandas as pd
rng = np.random.RandomState(1994)

pd_dict = {}
for i in range(cols):
c = rng.randint(low=0, high=cats+1, size=rows)
pd_dict[str(i)] = pd.Series(c, dtype=np.int64)

df = pd.DataFrame(pd_dict)
label = df.iloc[:, 0]
for i in range(0, cols-1):
label += df.iloc[:, i]
label += 1
df = df.astype('category')
onehot = pd.get_dummies(df)
cat = df

by_etl_results = {}
by_builtin_results = {}

Expand All @@ -64,28 +81,20 @@ def run_categorical_basic(self, cat, onehot, label, rounds):
rtol=1e-3)
assert tm.non_increasing(by_builtin_results['Train']['rmse'])

@given(strategies.integers(10, 400), strategies.integers(5, 10),
strategies.integers(1, 5), strategies.integers(4, 8))
@given(strategies.integers(10, 400), strategies.integers(3, 8),
strategies.integers(1, 5), strategies.integers(4, 7))
@settings(deadline=None)
@pytest.mark.skipif(**tm.no_pandas())
def test_categorical(self, rows, cols, rounds, cats):
import pandas as pd
rng = np.random.RandomState(1994)

pd_dict = {}
for i in range(cols):
c = rng.randint(low=0, high=cats+1, size=rows)
pd_dict[str(i)] = pd.Series(c, dtype=np.int64)

df = pd.DataFrame(pd_dict)
label = df.iloc[:, 0]
for i in range(0, cols-1):
label += df.iloc[:, i]
label += 1
df = df.astype('category')
x = pd.get_dummies(df)

self.run_categorical_basic(df, x, label, rounds)
self.run_categorical_basic(rows, cols, rounds, cats)

def test_categorical_32_cat(self):
'''32 hits the bound of integer bitset, so special test'''
rows = 1000
cols = 10
cats = 32
rounds = 4
self.run_categorical_basic(rows, cols, rounds, cats)

@pytest.mark.skipif(**tm.no_cupy())
@given(parameter_strategy, strategies.integers(1, 20),
Expand Down