Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Cover approx tree method for categorical data tests. #7569

Merged
merged 2 commits into from
Jan 16, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
21 changes: 5 additions & 16 deletions tests/python-gpu/test_gpu_parse_tree.py
Original file line number Diff line number Diff line change
@@ -1,25 +1,14 @@
import sys
import pytest
import xgboost as xgb

sys.path.append("tests/python")
import testing as tm
from test_parse_tree import TestTreesToDataFrame


def test_tree_to_df_categorical():
X, y = tm.make_categorical(100, 10, 31, False)
Xy = xgb.DMatrix(X, y, enable_categorical=True)
booster = xgb.train({"tree_method": "gpu_hist"}, Xy, num_boost_round=10)
df = booster.trees_to_dataframe()
for _, x in df.iterrows():
if x["Feature"] != "Leaf":
assert len(x["Category"]) == 1
cputest = TestTreesToDataFrame()
cputest.run_tree_to_df_categorical("gpu_hist")


def test_split_value_histograms():
X, y = tm.make_categorical(1000, 10, 13, False)
reg = xgb.XGBRegressor(tree_method="gpu_hist", enable_categorical=True)
reg.fit(X, y)

with pytest.raises(ValueError, match="doesn't"):
reg.get_booster().get_split_value_histogram("3", bins=5)
cputest = TestTreesToDataFrame()
cputest.run_split_value_histograms("gpu_hist")
31 changes: 4 additions & 27 deletions tests/python-gpu/test_gpu_plotting.py
Original file line number Diff line number Diff line change
@@ -1,40 +1,17 @@
import sys
import xgboost as xgb
import pytest
import json

sys.path.append("tests/python")
import testing as tm

try:
import matplotlib

matplotlib.use("Agg")
from matplotlib.axes import Axes
from graphviz import Source
except ImportError:
pass
import test_plotting as tp


pytestmark = pytest.mark.skipif(**tm.no_multiple(tm.no_matplotlib(), tm.no_graphviz()))


class TestPlotting:
cputest = tp.TestPlotting()

@pytest.mark.skipif(**tm.no_pandas())
def test_categorical(self):
X, y = tm.make_categorical(1000, 31, 19, onehot=False)
reg = xgb.XGBRegressor(
enable_categorical=True, n_estimators=10, tree_method="gpu_hist"
)
reg.fit(X, y)
trees = reg.get_booster().get_dump(dump_format="json")
for tree in trees:
j_tree = json.loads(tree)
assert "leaf" in j_tree.keys() or isinstance(
j_tree["split_condition"], list
)

graph = xgb.to_graphviz(reg, num_trees=len(j_tree) - 1)
assert isinstance(graph, Source)
ax = xgb.plot_tree(reg, num_trees=len(j_tree) - 1)
assert isinstance(ax, Axes)
self.cputest.run_categorical("gpu_hist")
24 changes: 23 additions & 1 deletion tests/python/test_parse_tree.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,6 @@


class TestTreesToDataFrame:

def build_model(self, max_depth, num_round):
dtrain = xgb.DMatrix(dpath + 'agaricus.txt.train')
param = {'max_depth': max_depth, 'objective': 'binary:logistic',
Expand Down Expand Up @@ -48,3 +47,26 @@ def test_trees_to_dataframe(self):
# test for equality of covers
cover_from_df = df.Cover.sum()
assert np.allclose(cover_from_dump, cover_from_df)

def run_tree_to_df_categorical(self, tree_method: str) -> None:
X, y = tm.make_categorical(100, 10, 31, False)
Xy = xgb.DMatrix(X, y, enable_categorical=True)
booster = xgb.train({"tree_method": tree_method}, Xy, num_boost_round=10)
df = booster.trees_to_dataframe()
for _, x in df.iterrows():
if x["Feature"] != "Leaf":
assert len(x["Category"]) >= 1

def test_tree_to_df_categorical(self) -> None:
self.run_tree_to_df_categorical("approx")

def run_split_value_histograms(self, tree_method) -> None:
X, y = tm.make_categorical(1000, 10, 13, False)
reg = xgb.XGBRegressor(tree_method=tree_method, enable_categorical=True)
reg.fit(X, y)

with pytest.raises(ValueError, match="doesn't"):
reg.get_booster().get_split_value_histogram("3", bins=5)

def test_split_value_histograms(self):
self.run_split_value_histograms("approx")
24 changes: 23 additions & 1 deletion tests/python/test_plotting.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
# -*- coding: utf-8 -*-
import json
import numpy as np
import xgboost as xgb
import testing as tm
Expand Down Expand Up @@ -73,3 +73,25 @@ def test_importance_plot_lim(self):
ax = xgb.plot_importance(bst, xlim=(0, 5), ylim=(10, 71))
assert ax.get_xlim() == (0., 5.)
assert ax.get_ylim() == (10., 71.)

def run_categorical(self, tree_method: str) -> None:
X, y = tm.make_categorical(1000, 31, 19, onehot=False)
reg = xgb.XGBRegressor(
enable_categorical=True, n_estimators=10, tree_method=tree_method
)
reg.fit(X, y)
trees = reg.get_booster().get_dump(dump_format="json")
for tree in trees:
j_tree = json.loads(tree)
assert "leaf" in j_tree.keys() or isinstance(
j_tree["split_condition"], list
)

graph = xgb.to_graphviz(reg, num_trees=len(j_tree) - 1)
assert isinstance(graph, Source)
ax = xgb.plot_tree(reg, num_trees=len(j_tree) - 1)
assert isinstance(ax, Axes)

@pytest.mark.skipif(**tm.no_pandas())
def test_categorical(self) -> None:
self.run_categorical("approx")