Skip to content

domarps/python-recipes

 
 

Repository files navigation

In a quest towards idiomatic python!

Some over-used verses during the first few months of my New Grad ML Engineering role :

  • Base64 decode, gzip decompress (De-serialization)
import numpy as np
import base64, gzip

feature = "H4sIAKhfy1sC/ztmf8aGaV6lPQDZfSSQCAAAAA==" #change-me
zipped = base64.b64decode(feature)
unzipped = gzip.decompress(zipped)
decoded = np.frombuffer(unzipped, dtype=np.float32)
  • Reversing a List
listA = listB[::-1]
  • List comprehension
values = [expression for value in collection if condition]
  • Initialize a two dimensional matrix, distance of size M * N
distance = [[-1 for _ in range(N)] for _ in range(M)]
  • Paths
import os
print('real_path', os.path.realpath(__file__))
print('dir_name', os.path.dirname(os.path.abspath(__file__)))
print('abs_path',os.path.abspath(__file__))
  • Some embarrassing hack to extract python shared object libraries from full-paths:
import os, sys
BASE_FOLDER = 'change_me'
CURRENT_PATH = os.getcwd()
BASE_PATH = CURRENT_PATH[0:CURRENT_PATH.index(BASE_FOLDER) + len(BASE_FOLDER)]
sys.path.insert(0, BASE_PATH + '/build')
import libAttrib as Attrib  # imports libAttrib from build dir
import libDetect as Detect  # imports libDetect from build dir
sys.path.insert(0, BASE_PATH + '/app')
  • python supports floating point division by default
5 / 2 # 2.5
5 // 2 # 2 (we use two backslashes)
  • The python range mini-bootcamp (no xrange from python3), range is a memory-efficient iterator:
range(3) # does not create a list, rather than an iterator, default starts from 0
a = list(range(3)) # converts iterator to List
list(range(1, len(a))) # output : [1,2]
  • Easy way to detect python python version
import platform
version = platform.python_version_tuple()  #version[0] == '2' or version[0] == '3'
  • Confirm tensorflow can actually see the GPU
import tensorflow as tf
device_name = tf.test.gpu_device_name()
if device_name != '/device:GPU:0':
  raise SystemError('GPU device not found')
print('Found GPU at: {}'.format(device_name))
  • Keyword arguments vs positional arguments:
# positional arguments
def test(a,b,c):
     print(a)
     print(b)
     print(c)

test(1,2,3)
#output:
1
2
3

# keyword arguments
def test(a=0,b=0,c=0):
     print(a)
     print(b)
     print(c)
     print('-------------------------')

test(a=1,b=2,c=3)
#output :
1
2
3
-------------------------
  • Use of * operator in function call
def sum(a,b):  #receive args from function calls as sum(1,2) or sum(a=1,b=2)
    print(a+b)

# Unpack data structure of list or tuple or dict into arguments with help of '*' operator
sum(*my_tuple)   # becomes same as sum(1,2) after unpacking my_tuple with '*'
sum(*my_list)    # becomes same as sum(1,2) after unpacking my_list with  '*'
sum(**my_dict)   # becomes same as sum(a=1,b=2) after unpacking by '**' NOTE!!!
  • Use of throwaway variables in python3
test_tensor = np.random.randn(3,2,4,5)
_,arg1, arg2, arg3 = test_tensor.shape
*_, arg2, arg3 = test_tensor.shape
  • Reshaping in numpy :The input x has shape (N, d_1, ..., d_k) and contains a minibatch of N examples , where each example x[i] has shape (d_1, ..., d_k). We will reshape each input into a vector of dimension D = d_1 * ... * d_k, and then transform it to an output vector of dimension M.
num_inputs = 2
input_shape = (4, 5, 6)
output_dim = 3

input_size = num_inputs * np.prod(input_shape)
weight_size = output_dim * np.prod(input_shape)

# *input_shape unpacks the tuple data structure into arguments needed by the function definition
x = np.linspace(-0.1, 0.5, num=input_size).reshape(num_inputs, *input_shape)
w = np.linspace(-0.2, 0.3, num=weight_size).reshape(np.prod(input_shape), output_dim)
b = np.linspace(-0.3, 0.1, num=output_dim)


input = x.reshape(x.shape[0], -1)
  • PathLib
from pathlib import Path

p = Path('data/lsun/')
[x for x in p.iterdir() if x.is_dir()]
  • Length of the generator
sum(1 for _ in gen_obj)

About

my one-stop-shop for python3 utilities

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 99.6%
  • Python 0.4%