-
Notifications
You must be signed in to change notification settings - Fork 9
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
anonymous
committed
Oct 13, 2020
0 parents
commit 99f9556
Showing
15 changed files
with
2,667 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,21 @@ | ||
MIT License | ||
|
||
Copyright (c) 2020 XXX | ||
|
||
Permission is hereby granted, free of charge, to any person obtaining a copy | ||
of this software and associated documentation files (the "Software"), to deal | ||
in the Software without restriction, including without limitation the rights | ||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | ||
copies of the Software, and to permit persons to whom the Software is | ||
furnished to do so, subject to the following conditions: | ||
|
||
The above copyright notice and this permission notice shall be included in all | ||
copies or substantial portions of the Software. | ||
|
||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | ||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | ||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
SOFTWARE. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,92 @@ | ||
# Adversarial Distributional Training | ||
|
||
This repository contains the code for adversarial distributional training (ADT) of our submission: *Adversarial Distributional Training for Robust Deep Learning*, to NeurIPS 2020. | ||
|
||
<img src="algos_adt.pdf"> | ||
|
||
Figure 1: An illustration of three different ADT methods, including (a) ADT<sub>EXP</sub>; (b) ADT<sub>EXP-AM</sub>; (c) ADT<sub>IMP-AM</sub>. | ||
|
||
|
||
|
||
## Prerequisites | ||
* Python (3.6.8) | ||
* Pytorch (1.3.0) | ||
* torchvision (0.4.1) | ||
* numpy | ||
|
||
## Training | ||
|
||
We have proposed three different methods for ADT. The command for each training method is specified below. | ||
|
||
### Training ADT<sub>EXP</sub> | ||
|
||
``` | ||
python adt_exp.py --model-dir adt-exp --dataset cifar10 (or cifar100/svhn) | ||
``` | ||
|
||
### Training ADT<sub>EXP-AM</sub> | ||
|
||
``` | ||
python adt_expam.py --model-dir adt-expam --dataset cifar10 (or cifar100/svhn) | ||
``` | ||
|
||
### Training ADT<sub>IMP-AM</sub> | ||
|
||
``` | ||
python adt_impam.py --model-dir adt-impam --dataset cifar10 (or cifar100/svhn) | ||
``` | ||
|
||
The checkpoints will be saved at each model folder. | ||
|
||
## Evaluation | ||
|
||
### Evaluation under White-box Attacks | ||
|
||
- For FGSM attack, run | ||
|
||
``` | ||
python evaluate_attacks.py --model-path ${MODEL-PATH} --attack-method FGSM --dataset cifar10 (or cifar100/svhn) | ||
``` | ||
|
||
- For PGD attack, run | ||
|
||
``` | ||
python evaluate_attacks.py --model-path ${MODEL-PATH} --attack-method PGD --num-steps 20 (or 100) --dataset cifar10 (or cifar100/svhn) | ||
``` | ||
|
||
- For MIM attack, run | ||
|
||
``` | ||
python evaluate_attacks.py --model-path ${MODEL-PATH} --attack-method MIM --num-steps 20 --dataset cifar10 (or cifar100/svhn) | ||
``` | ||
|
||
- For C&W attack, run | ||
|
||
``` | ||
python evaluate_attacks.py --model-path ${MODEL-PATH} --attack-method CW --num-steps 30 --dataset cifar10 (or cifar100/svhn) | ||
``` | ||
|
||
- For FeaAttack, run | ||
|
||
``` | ||
python feature_attack.py --model-path ${MODEL-PATH} --dataset cifar10 (or cifar100/svhn) | ||
``` | ||
|
||
|
||
### Evaluation under Transfer-based Black-box Attacks | ||
|
||
First change the `--white-box-attack` argument in `evaluate_attacks.py` to `False`. Then run | ||
|
||
``` | ||
python evaluate_attacks.py --source-model-path ${SOURCE-MODEL-PATH} --target-model-path ${TARGET-MODEL-PATH} --attack-method PGD (or MIM) | ||
``` | ||
|
||
### Evaluation under SPSA | ||
|
||
``` | ||
python spsa.py --model-path ${MODEL-PATH} --samples_per_draw 256 (or 512/1024/2048) | ||
``` | ||
|
||
## Pretrained Models | ||
|
||
We will release the pretrained models after the review process. It's easy to reproduce the results in our paper, as ADT<sub>EXP-AM</sub> and ADT<sub>IMP-AM</sub> need less than one GPU day to finish training. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,235 @@ | ||
from __future__ import print_function | ||
import os | ||
import argparse | ||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
from torch.autograd import Variable | ||
import torchvision | ||
import torch.optim as optim | ||
from torchvision import datasets, transforms | ||
|
||
from models.wideresnet import * | ||
from models.resnet import * | ||
|
||
parser = argparse.ArgumentParser(description='PyTorch Adversarial Distributional Training') | ||
parser.add_argument('--batch-size', type=int, default=64, metavar='N', | ||
help='input batch size for training (default: 128)') | ||
parser.add_argument('--test-batch-size', type=int, default=128, metavar='N', | ||
help='input batch size for testing (default: 128)') | ||
parser.add_argument('--epochs', type=int, default=76, metavar='N', | ||
help='number of epochs to train') | ||
parser.add_argument('--weight-decay', '--wd', default=2e-4, | ||
type=float, metavar='W') | ||
parser.add_argument('--lr', type=float, default=0.1, metavar='LR', | ||
help='learning rate') | ||
parser.add_argument('--momentum', type=float, default=0.9, metavar='M', | ||
help='SGD momentum') | ||
parser.add_argument('--no-cuda', action='store_true', default=False, | ||
help='disables CUDA training') | ||
parser.add_argument('--epsilon', default=8.0/255.0, | ||
help='perturbation') | ||
parser.add_argument('--num-steps', type=int, default=7, | ||
help='perturb number of steps') | ||
parser.add_argument('--step-size', type=float, default=0.3, | ||
help='perturb step size') | ||
parser.add_argument('--seed', type=int, default=1, metavar='S', | ||
help='random seed (default: 1)') | ||
parser.add_argument('--log-interval', type=int, default=100, metavar='N', | ||
help='how many batches to wait before logging training status') | ||
parser.add_argument('--model-dir', default='./model-cifar-wideResNet', | ||
help='directory of model for saving checkpoint') | ||
parser.add_argument('--save-freq', '-s', default=5, type=int, metavar='N', | ||
help='save frequency') | ||
parser.add_argument('--lbd', type=float, default=0.01, | ||
help='lambda for the entropy term') | ||
parser.add_argument('--dataset', type=str, default='cifar10', help='dataset') | ||
|
||
args = parser.parse_args() | ||
print(args) | ||
|
||
# settings | ||
model_dir = args.model_dir | ||
if not os.path.exists(model_dir): | ||
os.makedirs(model_dir) | ||
use_cuda = not args.no_cuda and torch.cuda.is_available() | ||
torch.manual_seed(args.seed) | ||
device = torch.device("cuda" if use_cuda else "cpu") | ||
kwargs = {'num_workers': 8, 'pin_memory': True} if use_cuda else {} | ||
|
||
# setup data loader | ||
transform_train = transforms.Compose([ | ||
transforms.RandomCrop(32, padding=4), | ||
transforms.RandomHorizontalFlip(), | ||
transforms.ToTensor(), | ||
]) | ||
transform_test = transforms.Compose([ | ||
transforms.ToTensor(), | ||
]) | ||
if args.dataset == 'cifar10': | ||
trainset = torchvision.datasets.CIFAR10(root='../data', train=True, download=True, transform=transform_train) | ||
testset = torchvision.datasets.CIFAR10(root='../data', train=False, download=True, transform=transform_test) | ||
elif args.dataset == 'cifar100': | ||
trainset = torchvision.datasets.CIFAR100(root='../data', train=True, download=True, transform=transform_train) | ||
testset = torchvision.datasets.CIFAR100(root='../data', train=False, download=True, transform=transform_test) | ||
elif args.dataset == 'svhn': | ||
args.epsilon = 4.0 / 255.0 | ||
trainset = torchvision.datasets.SVHN(root='../data', split='train', download=True, transform=transform_test) | ||
testset = torchvision.datasets.SVHN(root='../data', split='test', download=True, transform=transform_test) | ||
else: | ||
raise NotImplementedError | ||
|
||
train_loader = torch.utils.data.DataLoader(trainset, batch_size=args.batch_size, shuffle=True, **kwargs) | ||
test_loader = torch.utils.data.DataLoader(testset, batch_size=args.test_batch_size, shuffle=False, **kwargs) | ||
|
||
def adt_loss(model, | ||
x_natural, | ||
y, | ||
optimizer, | ||
learning_rate=1.0, | ||
epsilon=8.0/255.0, | ||
perturb_steps=10, | ||
num_samples=10, | ||
lbd=0.0): | ||
|
||
model.eval() | ||
batch_size = len(x_natural) | ||
# generate adversarial example | ||
mean = Variable(torch.zeros(x_natural.size()).cuda(), requires_grad=True) | ||
var = Variable(torch.zeros(x_natural.size()).cuda(), requires_grad=True) | ||
optimizer_adv = optim.Adam([mean, var], lr=learning_rate, betas=(0.0, 0.0)) | ||
|
||
for _ in range(perturb_steps): | ||
for s in range(num_samples): | ||
adv_std = F.softplus(var) | ||
rand_noise = torch.randn_like(x_natural) | ||
adv = torch.tanh(mean + rand_noise * adv_std) | ||
# omit the constants in -logp | ||
negative_logp = (rand_noise ** 2) / 2. + (adv_std + 1e-8).log() + (1 - adv ** 2 + 1e-8).log() | ||
entropy = negative_logp.mean() # entropy | ||
x_adv = torch.clamp(x_natural + epsilon * adv, 0.0, 1.0) | ||
|
||
# minimize the negative loss | ||
with torch.enable_grad(): | ||
loss = -F.cross_entropy(model(x_adv), y) - lbd * entropy | ||
loss.backward(retain_graph=True if s != num_samples - 1 else False) | ||
|
||
optimizer_adv.step() | ||
|
||
x_adv = torch.clamp(x_natural + epsilon * torch.tanh(mean + F.softplus(var) * torch.randn_like(x_natural)), 0.0, 1.0) | ||
model.train() | ||
x_adv = Variable(torch.clamp(x_adv, 0.0, 1.0), requires_grad=False) | ||
# zero gradient | ||
optimizer.zero_grad() | ||
# calculate robust loss | ||
logits = model(x_adv) | ||
loss = F.cross_entropy(logits, y) | ||
return loss | ||
|
||
|
||
def train(args, model, device, train_loader, optimizer, epoch): | ||
model.train() | ||
for batch_idx, (data, target) in enumerate(train_loader): | ||
data, target = data.to(device), target.to(device) | ||
|
||
optimizer.zero_grad() | ||
|
||
loss = adt_loss(model=model, | ||
x_natural=data, | ||
y=target, | ||
optimizer=optimizer, | ||
learning_rate=args.step_size, | ||
epsilon=args.epsilon, | ||
perturb_steps=args.num_steps, | ||
num_samples=5, | ||
lbd=args.lbd) | ||
|
||
loss.backward() | ||
optimizer.step() | ||
|
||
# print progress | ||
if batch_idx % args.log_interval == 0: | ||
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( | ||
epoch, batch_idx * len(data), len(train_loader.dataset), | ||
100. * batch_idx / len(train_loader), loss.item())) | ||
|
||
|
||
def eval_train(model, device, train_loader): | ||
model.eval() | ||
train_loss = 0 | ||
correct = 0 | ||
with torch.no_grad(): | ||
for data, target in train_loader: | ||
data, target = data.to(device), target.to(device) | ||
output = model(data) | ||
train_loss += F.cross_entropy(output, target, size_average=False).item() | ||
pred = output.max(1, keepdim=True)[1] | ||
correct += pred.eq(target.view_as(pred)).sum().item() | ||
train_loss /= len(train_loader.dataset) | ||
print('Training: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)'.format( | ||
train_loss, correct, len(train_loader.dataset), | ||
100. * correct / len(train_loader.dataset))) | ||
training_accuracy = correct / len(train_loader.dataset) | ||
return train_loss, training_accuracy | ||
|
||
|
||
def eval_test(model, device, test_loader): | ||
model.eval() | ||
test_loss = 0 | ||
correct = 0 | ||
with torch.no_grad(): | ||
for data, target in test_loader: | ||
data, target = data.to(device), target.to(device) | ||
output = model(data) | ||
test_loss += F.cross_entropy(output, target, size_average=False).item() | ||
pred = output.max(1, keepdim=True)[1] | ||
correct += pred.eq(target.view_as(pred)).sum().item() | ||
test_loss /= len(test_loader.dataset) | ||
print('Test: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)'.format( | ||
test_loss, correct, len(test_loader.dataset), | ||
100. * correct / len(test_loader.dataset))) | ||
test_accuracy = correct / len(test_loader.dataset) | ||
return test_loss, test_accuracy | ||
|
||
|
||
def adjust_learning_rate(optimizer, epoch): | ||
"""decrease the learning rate""" | ||
lr = args.lr | ||
if epoch >= 75: | ||
lr = args.lr * 0.1 | ||
if epoch >= 90: | ||
lr = args.lr * 0.01 | ||
if epoch >= 100: | ||
lr = args.lr * 0.001 | ||
for param_group in optimizer.param_groups: | ||
param_group['lr'] = lr | ||
|
||
|
||
def main(): | ||
# init model, ResNet18() can be also used here for training | ||
model = WideResNet(depth=28, num_classes=100 if args.dataset == 'cifar100' else 10).to(device) | ||
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay) | ||
|
||
for epoch in range(1, args.epochs + 1): | ||
# adjust learning rate for SGD | ||
adjust_learning_rate(optimizer, epoch) | ||
|
||
# adversarial training | ||
train(args, model, device, train_loader, optimizer, epoch) | ||
|
||
# evaluation on natural examples | ||
print('================================================================') | ||
eval_train(model, device, train_loader) | ||
eval_test(model, device, test_loader) | ||
print('================================================================') | ||
|
||
# save checkpoint | ||
if epoch % args.save_freq == 0 or epoch > 70: | ||
torch.save(model.state_dict(), | ||
os.path.join(model_dir, 'model-wideres-epoch{}.pt'.format(epoch))) | ||
torch.save(optimizer.state_dict(), | ||
os.path.join(model_dir, 'opt-wideres-checkpoint_epoch{}.tar'.format(epoch))) | ||
|
||
|
||
if __name__ == '__main__': | ||
main() |
Oops, something went wrong.