Skip to content

Commit

Permalink
first commit
Browse files Browse the repository at this point in the history
  • Loading branch information
anonymous committed Oct 13, 2020
0 parents commit 99f9556
Show file tree
Hide file tree
Showing 15 changed files with 2,667 additions and 0 deletions.
21 changes: 21 additions & 0 deletions LICENSE
Original file line number Diff line number Diff line change
@@ -0,0 +1,21 @@
MIT License

Copyright (c) 2020 XXX

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
92 changes: 92 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,92 @@
# Adversarial Distributional Training

This repository contains the code for adversarial distributional training (ADT) of our submission: *Adversarial Distributional Training for Robust Deep Learning*, to NeurIPS 2020.

<img src="algos_adt.pdf">

Figure 1: An illustration of three different ADT methods, including (a) ADT<sub>EXP</sub>; (b) ADT<sub>EXP-AM</sub>; (c) ADT<sub>IMP-AM</sub>.



## Prerequisites
* Python (3.6.8)
* Pytorch (1.3.0)
* torchvision (0.4.1)
* numpy

## Training

We have proposed three different methods for ADT. The command for each training method is specified below.

### Training ADT<sub>EXP</sub>

```
python adt_exp.py --model-dir adt-exp --dataset cifar10 (or cifar100/svhn)
```

### Training ADT<sub>EXP-AM</sub>

```
python adt_expam.py --model-dir adt-expam --dataset cifar10 (or cifar100/svhn)
```

### Training ADT<sub>IMP-AM</sub>

```
python adt_impam.py --model-dir adt-impam --dataset cifar10 (or cifar100/svhn)
```

The checkpoints will be saved at each model folder.

## Evaluation

### Evaluation under White-box Attacks

- For FGSM attack, run

```
python evaluate_attacks.py --model-path ${MODEL-PATH} --attack-method FGSM --dataset cifar10 (or cifar100/svhn)
```

- For PGD attack, run

```
python evaluate_attacks.py --model-path ${MODEL-PATH} --attack-method PGD --num-steps 20 (or 100) --dataset cifar10 (or cifar100/svhn)
```

- For MIM attack, run

```
python evaluate_attacks.py --model-path ${MODEL-PATH} --attack-method MIM --num-steps 20 --dataset cifar10 (or cifar100/svhn)
```

- For C&W attack, run

```
python evaluate_attacks.py --model-path ${MODEL-PATH} --attack-method CW --num-steps 30 --dataset cifar10 (or cifar100/svhn)
```

- For FeaAttack, run

```
python feature_attack.py --model-path ${MODEL-PATH} --dataset cifar10 (or cifar100/svhn)
```


### Evaluation under Transfer-based Black-box Attacks

First change the `--white-box-attack` argument in `evaluate_attacks.py` to `False`. Then run

```
python evaluate_attacks.py --source-model-path ${SOURCE-MODEL-PATH} --target-model-path ${TARGET-MODEL-PATH} --attack-method PGD (or MIM)
```

### Evaluation under SPSA

```
python spsa.py --model-path ${MODEL-PATH} --samples_per_draw 256 (or 512/1024/2048)
```

## Pretrained Models

We will release the pretrained models after the review process. It's easy to reproduce the results in our paper, as ADT<sub>EXP-AM</sub> and ADT<sub>IMP-AM</sub> need less than one GPU day to finish training.
235 changes: 235 additions & 0 deletions adt_exp.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,235 @@
from __future__ import print_function
import os
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import torchvision
import torch.optim as optim
from torchvision import datasets, transforms

from models.wideresnet import *
from models.resnet import *

parser = argparse.ArgumentParser(description='PyTorch Adversarial Distributional Training')
parser.add_argument('--batch-size', type=int, default=64, metavar='N',
help='input batch size for training (default: 128)')
parser.add_argument('--test-batch-size', type=int, default=128, metavar='N',
help='input batch size for testing (default: 128)')
parser.add_argument('--epochs', type=int, default=76, metavar='N',
help='number of epochs to train')
parser.add_argument('--weight-decay', '--wd', default=2e-4,
type=float, metavar='W')
parser.add_argument('--lr', type=float, default=0.1, metavar='LR',
help='learning rate')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='SGD momentum')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--epsilon', default=8.0/255.0,
help='perturbation')
parser.add_argument('--num-steps', type=int, default=7,
help='perturb number of steps')
parser.add_argument('--step-size', type=float, default=0.3,
help='perturb step size')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=100, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--model-dir', default='./model-cifar-wideResNet',
help='directory of model for saving checkpoint')
parser.add_argument('--save-freq', '-s', default=5, type=int, metavar='N',
help='save frequency')
parser.add_argument('--lbd', type=float, default=0.01,
help='lambda for the entropy term')
parser.add_argument('--dataset', type=str, default='cifar10', help='dataset')

args = parser.parse_args()
print(args)

# settings
model_dir = args.model_dir
if not os.path.exists(model_dir):
os.makedirs(model_dir)
use_cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
device = torch.device("cuda" if use_cuda else "cpu")
kwargs = {'num_workers': 8, 'pin_memory': True} if use_cuda else {}

# setup data loader
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
])
if args.dataset == 'cifar10':
trainset = torchvision.datasets.CIFAR10(root='../data', train=True, download=True, transform=transform_train)
testset = torchvision.datasets.CIFAR10(root='../data', train=False, download=True, transform=transform_test)
elif args.dataset == 'cifar100':
trainset = torchvision.datasets.CIFAR100(root='../data', train=True, download=True, transform=transform_train)
testset = torchvision.datasets.CIFAR100(root='../data', train=False, download=True, transform=transform_test)
elif args.dataset == 'svhn':
args.epsilon = 4.0 / 255.0
trainset = torchvision.datasets.SVHN(root='../data', split='train', download=True, transform=transform_test)
testset = torchvision.datasets.SVHN(root='../data', split='test', download=True, transform=transform_test)
else:
raise NotImplementedError

train_loader = torch.utils.data.DataLoader(trainset, batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(testset, batch_size=args.test_batch_size, shuffle=False, **kwargs)

def adt_loss(model,
x_natural,
y,
optimizer,
learning_rate=1.0,
epsilon=8.0/255.0,
perturb_steps=10,
num_samples=10,
lbd=0.0):

model.eval()
batch_size = len(x_natural)
# generate adversarial example
mean = Variable(torch.zeros(x_natural.size()).cuda(), requires_grad=True)
var = Variable(torch.zeros(x_natural.size()).cuda(), requires_grad=True)
optimizer_adv = optim.Adam([mean, var], lr=learning_rate, betas=(0.0, 0.0))

for _ in range(perturb_steps):
for s in range(num_samples):
adv_std = F.softplus(var)
rand_noise = torch.randn_like(x_natural)
adv = torch.tanh(mean + rand_noise * adv_std)
# omit the constants in -logp
negative_logp = (rand_noise ** 2) / 2. + (adv_std + 1e-8).log() + (1 - adv ** 2 + 1e-8).log()
entropy = negative_logp.mean() # entropy
x_adv = torch.clamp(x_natural + epsilon * adv, 0.0, 1.0)

# minimize the negative loss
with torch.enable_grad():
loss = -F.cross_entropy(model(x_adv), y) - lbd * entropy
loss.backward(retain_graph=True if s != num_samples - 1 else False)

optimizer_adv.step()

x_adv = torch.clamp(x_natural + epsilon * torch.tanh(mean + F.softplus(var) * torch.randn_like(x_natural)), 0.0, 1.0)
model.train()
x_adv = Variable(torch.clamp(x_adv, 0.0, 1.0), requires_grad=False)
# zero gradient
optimizer.zero_grad()
# calculate robust loss
logits = model(x_adv)
loss = F.cross_entropy(logits, y)
return loss


def train(args, model, device, train_loader, optimizer, epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)

optimizer.zero_grad()

loss = adt_loss(model=model,
x_natural=data,
y=target,
optimizer=optimizer,
learning_rate=args.step_size,
epsilon=args.epsilon,
perturb_steps=args.num_steps,
num_samples=5,
lbd=args.lbd)

loss.backward()
optimizer.step()

# print progress
if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))


def eval_train(model, device, train_loader):
model.eval()
train_loss = 0
correct = 0
with torch.no_grad():
for data, target in train_loader:
data, target = data.to(device), target.to(device)
output = model(data)
train_loss += F.cross_entropy(output, target, size_average=False).item()
pred = output.max(1, keepdim=True)[1]
correct += pred.eq(target.view_as(pred)).sum().item()
train_loss /= len(train_loader.dataset)
print('Training: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)'.format(
train_loss, correct, len(train_loader.dataset),
100. * correct / len(train_loader.dataset)))
training_accuracy = correct / len(train_loader.dataset)
return train_loss, training_accuracy


def eval_test(model, device, test_loader):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += F.cross_entropy(output, target, size_average=False).item()
pred = output.max(1, keepdim=True)[1]
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
print('Test: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
test_accuracy = correct / len(test_loader.dataset)
return test_loss, test_accuracy


def adjust_learning_rate(optimizer, epoch):
"""decrease the learning rate"""
lr = args.lr
if epoch >= 75:
lr = args.lr * 0.1
if epoch >= 90:
lr = args.lr * 0.01
if epoch >= 100:
lr = args.lr * 0.001
for param_group in optimizer.param_groups:
param_group['lr'] = lr


def main():
# init model, ResNet18() can be also used here for training
model = WideResNet(depth=28, num_classes=100 if args.dataset == 'cifar100' else 10).to(device)
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)

for epoch in range(1, args.epochs + 1):
# adjust learning rate for SGD
adjust_learning_rate(optimizer, epoch)

# adversarial training
train(args, model, device, train_loader, optimizer, epoch)

# evaluation on natural examples
print('================================================================')
eval_train(model, device, train_loader)
eval_test(model, device, test_loader)
print('================================================================')

# save checkpoint
if epoch % args.save_freq == 0 or epoch > 70:
torch.save(model.state_dict(),
os.path.join(model_dir, 'model-wideres-epoch{}.pt'.format(epoch)))
torch.save(optimizer.state_dict(),
os.path.join(model_dir, 'opt-wideres-checkpoint_epoch{}.tar'.format(epoch)))


if __name__ == '__main__':
main()
Loading

0 comments on commit 99f9556

Please sign in to comment.