Roundtrip is a deep generative neural density estimator which exploits the advantage of GANs for generating samples and estimates density by either importance sampling or Laplace approximation. This repository provides source code and instructions for using Roundtrip on both simulation data and real data.
-
Apr/2023: A detailed Ipython notebook tutorial for using new version of Roundtrip is provide here.
-
Apr/2023: Roundtrip is available from PyPI.
-
Mar/2023: Roundtrip supports Python3 and Tensorflow 2. See instructions.
New version (recommended)
- TensorFlow>=2.8.0
- Python>=3.7
Old version
- TensorFlow==1.13.1
- Python==2.7.1
docker build -t roundtrip:train .
docker run --rm -i -t --gpus all -v [path you want to mount]:/app roundtrip:train /bin/bash
PS: you can also run without gpu by removing : --gpus all
A ready-to-pull docker image is provided as well :
docker pull codgas/ubuntu18.04_cuda10.0_cudnn7_tf1.13.1_py2.7
Roundtrip can be downloaded by
git clone https://github.com/kimmo1019/Roundtrip
Software has been tested on a Linux (Centos 7) and Python2.7 environment. A GPU card is recommended for accelerating the training process.
This section provides instructions on how to reproduce results in the original paper.
We tested Roundtrip on three types of simulation datasets. (1) Indepedent Gaussian mixture. (2) 8-octagon Gaussian mixture. (3) Involute.
The main python script main_density_est.py
is used for implementing Roundtrip. Model architecture for Roundtrip can be find in model.py
. Data loader or data sampler can be find in util.py
.
Taking the (1) for an example, one can run the following commond to train a Roundtrip model with indepedent Gaussian mixture data.
CUDA_VISIBLE_DEVICES=0 python main_density_est.py --dx 2 --dy 2 --train True --data indep_gmm --epochs 100 --cv_epoch 30 --patience 5
[dx] -- dimension of latent space
[dy] -- dimension of observation space
[train] -- whethre use train mode
[data] -- dataset name
[epochs] -- maximum training epoches
[cv_epoch] -- epoch where (cross) validation begins
[patience] -- patience for early stopping
After training the model, you will have three part of outputs, which are marked by a unique timestamp YYYYMMDD_HHMMSS
. This timestamp records the exact time when you run the script.
-
log
files and estimated density can be found at folderdata/density_est_YYYYMMDD_HHMMSS_indep_gmm_x_dim=2_y_dim=2_alpha=10.0_beta=10.0
. -
Model weights will be saved at folder
checkpoint/density_est_YYYYMMDD_HHMMSS_indep_gmm_x_dim=2_y_dim=2_alpha=10.0_beta=10.0
. -
The training loss curves were recorded at folder
graph/density_est_YYYYMMDD_HHMMSS_indep_gmm_x_dim=2_y_dim=2_alpha=10.0_beta=10.0
, which can be visualized using TensorBoard.
Next, we want to visulize the estimated density on a 2D region. One can then run the following script.
CUDA_VISIBLE_DEVICES=0 python evaluate.py --data indep_gmm --epoch epoch --path path
[YYYYMMDD_HHMMSS] -- timestamp in the last training step
[epoch] -- epoch for loading model weights
[path] --path to data folder, e.g., `data/density_est_YYYYMMDD_HHMMSS_indep_gmm_x_dim=2_y_dim=2_alpha=10.0_beta=10.0`
we suggest to use the epoch recorded in the last line of the log_test.txt
file in the output part 1). Then the estimated density (.png) on a 2D grid region will be saved in the same data folder data/density_est_YYYYMMDD_HHMMSS_indep_gmm_x_dim=2_y_dim=2_alpha=10.0_beta=10.0
.
It also easy to implement Roundtrip with other two simulation datasets by changing the data
.
- 8-octagon Gaussian mixture
Model training:
Density esitmation on a 2D grid region:
CUDA_VISIBLE_DEVICES=0 python main_density_est.py --dx 2 --dy 2 --train True --data eight_octagon_gmm --epochs 300 --cv_epoch 200 --patience 5
CUDA_VISIBLE_DEVICES=0 python evaluate.py --data eight_octagon_gmm --epoch epoch --path path
- involute
Model training:
Density esitmation on a 2D grid region:
CUDA_VISIBLE_DEVICES=0 python main_density_est.py --dx 2 --dy 2 --train True --data involute --epochs 300 --cv_epoch 200 --patience 5
CUDA_VISIBLE_DEVICES=0 python evaluate.py --data involute --epoch epoch --path path
Next, we tested Roundtrip on different types of real data including five datasets from UCI machine learning repository and two image datasets. We provided freely public access to all related datasets (UCI datasets, image datasets, and OODS datasets), which can be download from a zenodo repository. All you need is to download the corresponding dataset (e.g., AreM.tar.gz
), uncompress the data under datasets
folder. Please also note that we provided various of pretrain models for a quick implementation of Roundtrip without training (see pretrain models section).
The original UCI datasets were from UCI machine learning repository. As the real data has no groud truth for density, we evaluate Roundtrip by calculating the average log likelihood on the test data. Similar to the simulation data, we take AreM
dataset for an example, one can directly run
CUDA_VISIBLE_DEVICES=0 python main_density_est.py --dx 3 --dy 6 --train True --data uci_AReM --epochs 300 --cv_epoch 20 --patience 10 --use_cv True
Note that all the dataset from UCI machine learning repository will be added a prefix uci_
to the data name. The average log likelihood and stantard deviation can be found in log_test.txt
under data folder data/density_est_YYYYMMDD_HHMMSS_uci_AreM_x_dim=2_y_dim=2_alpha=10.0_beta=10.0
.
We also provide scripts for implementing Roundtrip with other UCI dataset.
- CASP
CUDA_VISIBLE_DEVICES=0 python main_density_est.py --dx 5 --dy 9 --train True --data uci_CASP --epochs 300 --cv_epoch 20 --patience 10 --use_cv True
- HEPMASS
CUDA_VISIBLE_DEVICES=0 python main_density_est.py --dx 8 --dy 21 --train True --data uci_HEPMASS --epochs 300 --cv_epoch 20 --patience 10 --use_cv True
- BANK
CUDA_VISIBLE_DEVICES=0 python main_density_est.py --dx 8 --dy 17 --train True --data uci_BANK --epochs 300 --cv_epoch 20 --patience 10 --use_cv True
- YPMSD
CUDA_VISIBLE_DEVICES=0 python main_density_est.py --dx 20 --dy 90 --train True --data uci_YPMSD --epochs 300 --cv_epoch 20 --patience 10 --use_cv True
MNIST and CIFAR-10 were used in our study. Unlike previous experiments, we focus on conditional density estimation where a ont-hot encoded class label will be introduced to the networks as an additional input.
Download data from zenodo repository and uncompress the two datasets under data
folder.
One can run the conditional image generation and conditional denstiy estimation simultaneously through the following script.
-
MNIST
Model training
CUDA_VISIBLE_DEVICES=0 python main_density_est_img.py --dx 100 --dy 784 --train True --data mnist --epochs 100 --cv_epoch 50 --patience 5
Model test
python evaluate.py --data mnist --path path [path] -- path to data folder (e.g., data/density_est_YYYYMMDD_HHMMSS_mnist_x_dim=100_y_dim=784_alpha=10.0_beta=10.0)
-
CIFAR-10
Model training
CUDA_VISIBLE_DEVICES=0 python main_density_est_img.py --dx 100 --dy 3072 --train True --data cifar10 --epochs 1000 --cv_epoch 500 --patience 5
Model test
python evaluate.py --data cifar10 --path path
After model test, the generated images can be found in the first part of outputs.
We introduced three outlier detection datasets (Shuttle, Mammography, and ForestCover) from ODDS library. Download the three datasets (ODDS.tar.gz
) from the zenodo repository. Uncompress it under the datasets
folder.
One can run the following commonds to train a Roundtrip model and evaluate by precision at K.
-
Shuttle
Model training
CUDA_VISIBLE_DEVICES=0 python main_density_est.py --dx 3 --dy 9 --train True --data odds_Shuttle --epochs 300 --cv_epoch 30 --patience 10
Model evaluation
python evaluate.py --data odds_Shuttle --epoch epoch --path path [epoch] -- epoch for loading model weights (e.g., epoch recorded in the last line in log_test.txt) [path] -- path to the frist part of outputs (e.g., data/density_est_YYYYMMDD_HHMMSS_odds_Shuttle_x_dim=3_y_dim=9_alpha=10.0_beta=10.0)
-
Mammography
Model training
CUDA_VISIBLE_DEVICES=0 python main_density_est.py --dx 3 --dy 6 --train True --data odds_Mammography --epochs 300 --cv_epoch 30 --patience 10
Model evaluation
python evaluate.py --data odds_Mammography --epoch epoch --path path
-
ForestCover
Model training
CUDA_VISIBLE_DEVICES=0 python main_density_est.py --dx 4 --dy 10 --train True --data odds_ForestCover --epochs 300 --cv_epoch 30 --patience 10
Model evaluation
python evaluate.py --data odds_ForestCover --epoch epoch --path path
The precision at K of Roundtrip, One-class SVM and Isolation Forest will be calculated and printed.
We provide various of pretrain models for a quick implementation of Roundtrip. First, one needs to download the pretrain models pre_trained_models.tar.gz
from zenodo repository. Then uncompress it under Roundtrip
folder. For the above models that use evaluate.py
for model evaluation. One can simply add --pretrain True
to the end of each evaluation command. For an example, one can run
python evaluate.py --data mnist --path path --pretrain True
This can implement the Beyes posterior probability estimation, which will result in around 98.3% classification accuracy. Note that in pretrain evaluation, the path
parameter can be any fold path like density_est_YYYYMMDD_HHMMSS_mnist_x_dim=100_y_dim=784_alpha=10.0_beta=10.0
. path
name is necessary as it is used for parsing parameters in evaluate.py
.
Roundtrip can be used for a general-purpose density estimation. Besides that, Roundtrip has various downstream applications including but not limited to
- Supervised learning (already covered in this paper)
- Unsupervised learning (refer to our another work published by Nature Machine Intelligence)
- Causal inference (refer to our another work on arXiv)
- Likelihood-free Bayesian inference
- Sequential Markov chain Monte Carlo (MCMC)
Please feel free to open an issue in Github or directly contact liuqiao@stanford.edu
if you have any problem in Roundtrip.
If you find Roundtrip useful for your work, please consider citing our paper:
Qiao Liu, Jiaze Xu, Rui Jiang, Wing Hung Wong. Density estimation using deep generative neural networks[J]. Proceedings of the National Academy of Sciences. 2021, 118 (15) e2101344118; DOI: 10.1073/pnas.2101344118.
This project is licensed under the MIT License - see the LICENSE.md file for details