-
Notifications
You must be signed in to change notification settings - Fork 6
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* more to do * why model no worky * looking better * little cleaner, overfit works * cool
- Loading branch information
Showing
9 changed files
with
878 additions
and
5 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,44 @@ | ||
# Llama Pretraining | ||
|
||
This directory contains the code for pretraining Llama. The model definition is from [gpt-fast](https://github.com/pytorch-labs/gpt-fast). It is slightly modified to remove the kvcache since this is not needed during pre-training. | ||
|
||
The Tokenizer is from the original [LLama repo](https://github.com/facebookresearch/llama) and uses sentencepiece under the hood. Instead of training the tokenizer from scratch the tokenizer.bin file from llama2 release is used. | ||
|
||
The training loop can be found in `train.py`. It expects that the `prepare_data.py` script has been run to generate the training data. The training data is expected to be in the `data/` directory. | ||
|
||
### Usage | ||
|
||
#### Install dependencies | ||
``` Shell | ||
pip install -e . | ||
pip install -e ".[llama]" | ||
``` | ||
Get the Llama2 tokenizer, file and place inside the `llama/data` directory. | ||
|
||
The following paths are assumed you are in the top level `transformer_nuggets/` directory. | ||
|
||
#### Prepare Data | ||
|
||
Then run the following command: | ||
``` Shell | ||
python transformer_nuggets/llama/prepare_data.py \ | ||
--tokenizer_path=transformer_nuggets/llama/data/tokenizer.model \ | ||
--output_dir=transformer_nuggets/llama/data/ | ||
``` | ||
This should take around 3 minutes to run and prepare the training data. | ||
|
||
#### Train Model | ||
To edit the training configs take a look at `transformer_nuggets/llama/train.py`. The `entrypoint` function constructs the hyperparam configs as well as the | ||
training configs. By default this will train a 7b model and and save the checkpoints to `transformer_nuggets/llama/data/out/`. It will also save the loss | ||
logs to `transformer_nuggets/llama/data/logs`. | ||
|
||
|
||
To tain the model using delayed scaling with torch compile run the command | ||
``` Shell | ||
python transformer_nuggets/llama/train.py \ | ||
--fp8_linear_type "delayed" --compile True | ||
``` | ||
|
||
|
||
### Notes | ||
To get the Llama2 tokenizer go to https://huggingface.co/meta-llama/Llama-2-7b and go through steps to obtain access. This will get you pretrained weights as well as the tokenizer. |
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,265 @@ | ||
# Copyright (c) Meta Platforms, Inc. and affiliates. | ||
# All rights reserved. | ||
|
||
# This source code is licensed under the license found in the | ||
# LICENSE file in the root directory of this source tree. | ||
from dataclasses import dataclass | ||
from typing import Optional | ||
|
||
import torch | ||
import torch.nn as nn | ||
from torch import Tensor | ||
from torch.nn import functional as F | ||
|
||
|
||
def find_multiple(n: int, k: int) -> int: | ||
if n % k == 0: | ||
return n | ||
return n + k - (n % k) | ||
|
||
|
||
@dataclass | ||
class ModelArgs: | ||
block_size: int = 2048 | ||
vocab_size: int = 32000 | ||
n_layer: int = 32 | ||
n_head: int = 32 | ||
dim: int = 4096 | ||
intermediate_size: int = None | ||
n_local_heads: int = -1 | ||
head_dim: int = 64 | ||
rope_base: float = 10000 | ||
norm_eps: float = 1e-5 | ||
|
||
def __post_init__(self): | ||
if self.n_local_heads == -1: | ||
self.n_local_heads = self.n_head | ||
if self.intermediate_size is None: | ||
hidden_dim = 4 * self.dim | ||
n_hidden = int(2 * hidden_dim / 3) | ||
self.intermediate_size = find_multiple(n_hidden, 256) | ||
self.head_dim = self.dim // self.n_head | ||
|
||
@classmethod | ||
def from_name(cls, name: str): | ||
if name in transformer_configs: | ||
return cls(**transformer_configs[name]) | ||
# fuzzy search | ||
config = [ | ||
config | ||
for config in transformer_configs | ||
if config in str(name).upper() or config in str(name) | ||
] | ||
assert len(config) == 1, name | ||
return cls(**transformer_configs[config[0]]) | ||
|
||
|
||
transformer_configs = { | ||
"CodeLlama-7b-Python-hf": dict( | ||
block_size=16384, vocab_size=32000, n_layer=32, dim=4096, rope_base=1000000 | ||
), | ||
"7B": dict(n_layer=32, n_head=32, dim=4096), | ||
"13B": dict(n_layer=40, n_head=40, dim=5120), | ||
"30B": dict(n_layer=60, n_head=52, dim=6656), | ||
"34B": dict( | ||
n_layer=48, | ||
n_head=64, | ||
dim=8192, | ||
vocab_size=32000, | ||
n_local_heads=8, | ||
intermediate_size=22016, | ||
rope_base=1000000, | ||
), # CodeLlama-34B-Python-hf | ||
"70B": dict(n_layer=80, n_head=64, dim=8192, n_local_heads=8, intermediate_size=28672), | ||
} | ||
|
||
|
||
class KVCache(nn.Module): | ||
def __init__(self, max_batch_size, max_seq_length, n_heads, head_dim, dtype=torch.bfloat16): | ||
super().__init__() | ||
cache_shape = (max_batch_size, n_heads, max_seq_length, head_dim) | ||
self.register_buffer("k_cache", torch.zeros(cache_shape, dtype=dtype)) | ||
self.register_buffer("v_cache", torch.zeros(cache_shape, dtype=dtype)) | ||
|
||
def update(self, input_pos, k_val, v_val): | ||
# input_pos: [S], k_val: [B, H, S, D] | ||
assert input_pos.shape[0] == k_val.shape[2] | ||
|
||
k_out = self.k_cache | ||
v_out = self.v_cache | ||
k_out[:, :, input_pos] = k_val | ||
v_out[:, :, input_pos] = v_val | ||
|
||
return k_out, v_out | ||
|
||
|
||
class Transformer(nn.Module): | ||
def __init__(self, config: ModelArgs) -> None: | ||
super().__init__() | ||
self.config = config | ||
|
||
self.tok_embeddings = nn.Embedding(config.vocab_size, config.dim) | ||
self.layers = nn.ModuleList(TransformerBlock(config) for _ in range(config.n_layer)) | ||
self.norm = RMSNorm(config.dim, eps=config.norm_eps) | ||
self.output = nn.Linear(config.dim, config.vocab_size, bias=False) | ||
|
||
self.freqs_cis: Optional[Tensor] = None | ||
self.mask_cache: Optional[Tensor] = None | ||
self.max_batch_size = -1 | ||
self.max_seq_length = -1 | ||
|
||
def setup_caches(self, max_batch_size, max_seq_length, device: torch.device): | ||
if self.max_seq_length >= max_seq_length and self.max_batch_size >= max_batch_size: | ||
return | ||
head_dim = self.config.dim // self.config.n_head | ||
max_seq_length = find_multiple(max_seq_length, 8) | ||
self.max_seq_length = max_seq_length | ||
self.max_batch_size = max_batch_size | ||
|
||
self.freqs_cis = precompute_freqs_cis( | ||
max_seq_length, | ||
head_dim, | ||
device, | ||
self.config.rope_base, | ||
) | ||
|
||
def forward(self, idx: Tensor, input_pos: Optional[Tensor] = None) -> Tensor: | ||
assert self.freqs_cis is not None, "Caches must be initialized first" | ||
freqs_cis = self.freqs_cis[input_pos] | ||
x = self.tok_embeddings(idx) | ||
|
||
for i, layer in enumerate(self.layers): | ||
x = layer(x, input_pos, freqs_cis) | ||
x = self.norm(x) | ||
logits = self.output(x) | ||
return logits | ||
|
||
@classmethod | ||
def from_name(cls, name: str): | ||
return cls(ModelArgs.from_name(name)) | ||
|
||
def init_parameters(self): | ||
"""Initialize the parameters, taken from nanogpt""" | ||
|
||
def _init_weights(module: nn.Module): | ||
if isinstance(module, nn.Linear): | ||
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) | ||
if module.bias is not None: | ||
torch.nn.init.zeros_(module.bias) | ||
elif isinstance(module, nn.Embedding): | ||
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) | ||
|
||
self.apply(_init_weights) | ||
|
||
|
||
class TransformerBlock(nn.Module): | ||
def __init__(self, config: ModelArgs) -> None: | ||
super().__init__() | ||
self.attention = Attention(config) | ||
self.feed_forward = FeedForward(config) | ||
self.ffn_norm = RMSNorm(config.dim, config.norm_eps) | ||
self.attention_norm = RMSNorm(config.dim, config.norm_eps) | ||
|
||
def forward(self, x: Tensor, input_pos: Tensor, freqs_cis: Tensor) -> Tensor: | ||
h = x + self.attention(self.attention_norm(x), freqs_cis) | ||
out = h + self.feed_forward(self.ffn_norm(h)) | ||
return out | ||
|
||
|
||
class Attention(nn.Module): | ||
def __init__(self, config: ModelArgs): | ||
super().__init__() | ||
assert config.dim % config.n_head == 0 | ||
|
||
total_head_dim = (config.n_head + 2 * config.n_local_heads) * config.head_dim | ||
# key, query, value projections for all heads, but in a batch | ||
self.wqkv = nn.Linear(config.dim, total_head_dim, bias=False) | ||
self.wo = nn.Linear(config.dim, config.dim, bias=False) | ||
|
||
self.n_head = config.n_head | ||
self.head_dim = config.head_dim | ||
self.n_local_heads = config.n_local_heads | ||
self.dim = config.dim | ||
self._register_load_state_dict_pre_hook(self.load_hook) | ||
|
||
def load_hook(self, state_dict, prefix, *args): | ||
if prefix + "wq.weight" in state_dict: | ||
wq = state_dict.pop(prefix + "wq.weight") | ||
wk = state_dict.pop(prefix + "wk.weight") | ||
wv = state_dict.pop(prefix + "wv.weight") | ||
state_dict[prefix + "wqkv.weight"] = torch.cat([wq, wk, wv]) | ||
|
||
def forward(self, x: Tensor, freqs_cis: Tensor) -> Tensor: | ||
bsz, seqlen, _ = x.shape | ||
|
||
kv_size = self.n_local_heads * self.head_dim | ||
q, k, v = self.wqkv(x).split([self.dim, kv_size, kv_size], dim=-1) | ||
|
||
q = q.view(bsz, seqlen, self.n_head, self.head_dim) | ||
k = k.view(bsz, seqlen, self.n_local_heads, self.head_dim) | ||
v = v.view(bsz, seqlen, self.n_local_heads, self.head_dim) | ||
|
||
q = apply_rotary_emb(q, freqs_cis) | ||
k = apply_rotary_emb(k, freqs_cis) | ||
|
||
q, k, v = map(lambda x: x.transpose(1, 2), (q, k, v)) | ||
|
||
k = k.repeat_interleave(self.n_head // self.n_local_heads, dim=1) | ||
v = v.repeat_interleave(self.n_head // self.n_local_heads, dim=1) | ||
y = F.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0.0, is_causal=True) | ||
|
||
y = y.transpose(1, 2).contiguous().view(bsz, seqlen, self.dim) | ||
|
||
y = self.wo(y) | ||
return y | ||
|
||
|
||
class FeedForward(nn.Module): | ||
def __init__(self, config: ModelArgs) -> None: | ||
super().__init__() | ||
self.w1 = nn.Linear(config.dim, config.intermediate_size, bias=False) | ||
self.w3 = nn.Linear(config.dim, config.intermediate_size, bias=False) | ||
self.w2 = nn.Linear(config.intermediate_size, config.dim, bias=False) | ||
|
||
def forward(self, x: Tensor) -> Tensor: | ||
return self.w2(F.silu(self.w1(x)) * self.w3(x)) | ||
|
||
|
||
class RMSNorm(nn.Module): | ||
def __init__(self, dim: int, eps: float = 1e-5): | ||
super().__init__() | ||
self.eps = eps | ||
self.weight = nn.Parameter(torch.ones(dim)) | ||
|
||
def _norm(self, x): | ||
return x * torch.rsqrt(torch.mean(x * x, dim=-1, keepdim=True) + self.eps) | ||
|
||
def forward(self, x: Tensor) -> Tensor: | ||
output = self._norm(x.float()).type_as(x) | ||
return output * self.weight | ||
|
||
|
||
def precompute_freqs_cis( | ||
seq_len: int, n_elem: int, device: torch.device, base: int = 10000 | ||
) -> Tensor: | ||
freqs = 1.0 / (base ** (torch.arange(0, n_elem, 2)[: (n_elem // 2)].float() / n_elem)) | ||
t = torch.arange(seq_len, device=freqs.device) | ||
freqs = torch.outer(t, freqs) | ||
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) | ||
cache = torch.stack([freqs_cis.real, freqs_cis.imag], dim=-1) | ||
return cache.to(dtype=torch.bfloat16, device=device) | ||
|
||
|
||
def apply_rotary_emb(x: Tensor, freqs_cis: Tensor) -> Tensor: | ||
xshaped = x.float().reshape(*x.shape[:-1], -1, 2) | ||
freqs_cis = freqs_cis.view(1, xshaped.size(1), 1, xshaped.size(3), 2) | ||
x_out2 = torch.stack( | ||
[ | ||
xshaped[..., 0] * freqs_cis[..., 0] - xshaped[..., 1] * freqs_cis[..., 1], | ||
xshaped[..., 1] * freqs_cis[..., 0] + xshaped[..., 0] * freqs_cis[..., 1], | ||
], | ||
-1, | ||
) | ||
|
||
x_out2 = x_out2.flatten(3) | ||
return x_out2.type_as(x) |
Oops, something went wrong.